購買設(shè)計(jì)請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
本科畢業(yè)設(shè)計(jì)說明書(論文) 第 I 頁 共 I 頁
目 錄
1 緒論 1
1.1 引言 1
1.2 機(jī)器人的發(fā)展及技術(shù) 1
1.3 兩足機(jī)器人的優(yōu)點(diǎn)及國內(nèi)外研究概況 2
1.4 本課題的主要工作 7
2 雙足機(jī)器人本體結(jié)構(gòu)設(shè)計(jì)分析 8
2.1 引言 8
2.2 兩足機(jī)器人的結(jié)構(gòu)分析 8
2.3 機(jī)器人設(shè)計(jì)思路 9
2.4 機(jī)器人設(shè)計(jì)方案 10
2.5 驅(qū)動方式的選擇 12
3 雙足機(jī)器人的具體制作 13
3.1 雙足機(jī)器人的材料選擇 13
3.2 雙足機(jī)器人的零件加工 13
3.3 兩足機(jī)器人的組裝 16
3.4 兩足機(jī)器人相關(guān)數(shù)據(jù) 19
3.5 兩足機(jī)器人總體尺寸 19
3.6 舵機(jī)具體參數(shù) 19
4 課題總結(jié) 20
結(jié)束語 21
致謝 22
參考文獻(xiàn) 23
本科畢業(yè)設(shè)計(jì)說明書(論文) 第 25 頁 共 23 頁
1 緒論
1.1 引言
目前,機(jī)器人已形成一個(gè)不同技術(shù)層次、應(yīng)用于多種環(huán)境的“龐大”家族,從天上到地下,從陸地到海洋到處都可以看到機(jī)器人的身影。世界著名機(jī)器人專家,日本早稻田大學(xué)的加藤一郎教授曾經(jīng)指出“機(jī)器人應(yīng)當(dāng)具有的最大的特征之一是步行功能”。步行機(jī)器人的研究涉及到多門學(xué)科的交叉融合,如仿生學(xué)、機(jī)構(gòu)學(xué)、控制理論與工程學(xué)、電子工程學(xué)、計(jì)算機(jī)科學(xué)及傳感器信息融合等。仿人形機(jī)器人正成為機(jī)器人研究中的一個(gè)熱點(diǎn),其研究水平,在一定程度上代表了一個(gè)國家的高科技發(fā)展水平和綜合實(shí)力。研究仿人形雙足步行機(jī)器人,除了具有重要的學(xué)術(shù)意義,還有現(xiàn)實(shí)的應(yīng)用價(jià)值。
1.2 機(jī)器人的發(fā)展及技術(shù)
1.2.1 機(jī)器人的發(fā)展
20世紀(jì)40年代,伴隨著遙控操縱器和數(shù)控制造技術(shù)的出現(xiàn),關(guān)于機(jī)器人技術(shù)的研究開始出現(xiàn)。60年代美國的Consolidated Control公司研制出第一臺機(jī)器人樣機(jī),并成立了Unimation公司,定型生產(chǎn)了Unimate機(jī)器人。20世紀(jì)70年代以來,工業(yè)機(jī)器人產(chǎn)業(yè)蓬勃興起,機(jī)器人技術(shù)逐漸發(fā)展為專門學(xué)科。1970年,第一次國際機(jī)器人會議在美國舉行。經(jīng)過幾十年的發(fā)展,數(shù)百種不同結(jié)構(gòu)、不同控制系統(tǒng)、不同用途的機(jī)器人已進(jìn)入了實(shí)用化階段。
目前,盡管關(guān)于機(jī)器人的定義還未統(tǒng)一,但一般認(rèn)為機(jī)器人的發(fā)展按照從低級到高級經(jīng)歷了三代。第一代機(jī)器人,主要指只能以“示教-再現(xiàn)”方式工作的機(jī)器人,其只能依靠人們給定的程序,重復(fù)進(jìn)行各種操作。目前的各類工業(yè)機(jī)器人大都屬于第一代機(jī)器人。第二代機(jī)器人是具有一定傳感器反饋功能的機(jī)器人,其能獲取作業(yè)環(huán)境、操作對象的簡單信息,通過計(jì)算機(jī)處理、分析,機(jī)器人按照己編好的程序做出一定推理,對動作進(jìn)行反饋控制,表現(xiàn)出低級的智能。當(dāng)前,對第二代機(jī)器人的研究著重于實(shí)際應(yīng)用與普及推廣上。第三代機(jī)器人是指具有環(huán)境感知能力,并能做出自主決策的自治機(jī)器人。它具有多種感知功能,可進(jìn)行復(fù)雜的邏輯思維,判斷決策,在作業(yè)環(huán)境中可獨(dú)立行動。第三代機(jī)器人又稱為智能機(jī)器人,并己成為機(jī)器人學(xué)科的研究重點(diǎn),但目前還處于實(shí)驗(yàn)室探索階段[1]。
機(jī)器人技術(shù)己成為當(dāng)前科技研究和應(yīng)用的焦點(diǎn)與重心,并逐漸在工農(nóng)業(yè)生產(chǎn)和國防建設(shè)等方面發(fā)揮巨大作用。可以預(yù)見到,機(jī)器人將在21世紀(jì)人類社會生產(chǎn)和生活中扮演更加重要的角色。
1.2.2 機(jī)器人技術(shù)
機(jī)器人學(xué)是一門發(fā)展迅速的且具有高度綜合性的前沿學(xué)科,該學(xué)科涉及領(lǐng)域廣泛,集中了機(jī)械工程、電氣與電子工程、計(jì)算機(jī)工程、自動控制工程、生物科學(xué)以及人工智能等多種學(xué)科的最新科研成果,代表了機(jī)電一體化的最新成就[2]。機(jī)器人充分體現(xiàn)了人和機(jī)器的各自特長,它比傳統(tǒng)機(jī)器具有更大的靈活性和更廣泛的應(yīng)用范圍。機(jī)器人的出現(xiàn)和應(yīng)用是人類生產(chǎn)和社會進(jìn)步的需要,是科學(xué)技術(shù)發(fā)展和生產(chǎn)工具進(jìn)化的必然。目前,機(jī)器人及其自動化成套裝備己成為國內(nèi)外備受重視的高新技術(shù)應(yīng)用領(lǐng)域,與此同時(shí)它正以驚人的速度向海洋、航空、航天、軍事、農(nóng)業(yè)、服務(wù)、娛樂等各個(gè)領(lǐng)域滲透。
目前,雖然機(jī)器人的能力還是非常有限的,但是它正在迅速發(fā)展。隨著各學(xué)科的發(fā)展和社會需要的發(fā)展,機(jī)器人技術(shù)出現(xiàn)了許多新的發(fā)展方向和趨勢,如網(wǎng)絡(luò)機(jī)器人技術(shù)、虛擬機(jī)器人技術(shù)、協(xié)作機(jī)器人技術(shù)、微型機(jī)器人技術(shù)和雙足步行機(jī)器人技術(shù)等。人們普遍認(rèn)為,機(jī)器人技術(shù)將成為緊隨計(jì)算機(jī)技術(shù)及網(wǎng)絡(luò)技術(shù)之后的又一次重大的技術(shù)革命,它很可能將世界推向科學(xué)技術(shù)的新時(shí)代[3]。
1.3 兩足機(jī)器人的優(yōu)點(diǎn)及國內(nèi)外研究概況
1.3.1 雙足機(jī)器人的優(yōu)點(diǎn)
首先,雙足步行的移動方式在地面不平整或其它惡劣條件下(如充滿障礙物)比其他方式要靈活得多,具有更好的機(jī)動性。研究仿人形雙足步行機(jī)器人,以代替人類在核電站、太空、海底及其它危害人類身心健康的復(fù)雜極端環(huán)境中工作,將大大拓展人類的活動空間。
其次,雙足步行機(jī)器人的步行系統(tǒng)是一個(gè)內(nèi)在的不穩(wěn)定系統(tǒng),其動力學(xué)特性非常復(fù)雜,具有多變量、強(qiáng)耦合、非線性和變結(jié)構(gòu)的特點(diǎn)。因此,它是控制理論和控制工程領(lǐng)域的一個(gè)極好的研究對象,開展雙足步行技術(shù)的研究,必然推動控制理論的發(fā)展和控制技術(shù)的進(jìn)步。
再次,步行是人類的一種基本活動能力,但有相當(dāng)數(shù)量的人因?yàn)榧膊』蛞馔馐鹿适チ诉@種能力,雙足步行技術(shù)的發(fā)展會促進(jìn)動力型假肢的研制,將有可能解決截癱病人和小兒麻痹癥患者的行走問題,為康復(fù)醫(yī)學(xué)做出貢獻(xiàn)。對機(jī)器人雙足動態(tài)行走機(jī)理的深入研究也使我們更深刻地理解人類活動的內(nèi)在本質(zhì),有助于生物醫(yī)學(xué)工程和體育運(yùn)動科學(xué)的發(fā)展。
1.3.2 雙足機(jī)器人的步態(tài)特點(diǎn)及研究意義
步態(tài)規(guī)劃是雙足機(jī)器人失衡檢測與控制的基礎(chǔ)及預(yù)備性工作,也是雙足步行機(jī)器人的一項(xiàng)重要內(nèi)容。所謂的步態(tài),是指在步行過程中,步行本體的身體各部位在時(shí)序和空間上的一種協(xié)調(diào)關(guān)系;步態(tài)規(guī)劃就是給出機(jī)器人各關(guān)節(jié)位置與時(shí)間的關(guān)系,是雙足步行機(jī)器人研制中的一項(xiàng)關(guān)鍵技術(shù),也是難點(diǎn)之一。步態(tài)規(guī)劃的好壞將直接影響到雙足步行機(jī)器人的行走穩(wěn)定性、美觀性以及各關(guān)節(jié)所需驅(qū)動力矩的大小等多個(gè)方面,已經(jīng)成為雙足步行機(jī)器人領(lǐng)域的研究熱點(diǎn)?;谏鲜鲈?,本課題擬進(jìn)行雙足機(jī)器人步行穩(wěn)定性研究,研制具有高度穩(wěn)定性的雙足步行機(jī)器人平臺,為進(jìn)一步的行走機(jī)器人失衡檢測及控制技術(shù)研制奠定基礎(chǔ)。
1.3.3 國外研究概況
雙足機(jī)器人的研制開始于上世紀(jì)60年代末,雖然只有四十多年的歷史。然而,兩足機(jī)器人的研究工作進(jìn)展迅速,國內(nèi)外許多學(xué)者正從事于這一領(lǐng)域的研究,如今已成為機(jī)器人技術(shù)領(lǐng)域的主要研究方向之一。
步行的穩(wěn)定性是兩足機(jī)器人的難點(diǎn)和關(guān)鍵,南斯拉夫?qū)W者M(jìn)emoirVakobrativitch于1969年提出的ZMP(Zero Moment Point)理論較好地解決了動態(tài)步行穩(wěn)定性判斷問題。ZMP點(diǎn),即零力矩點(diǎn),是雙足機(jī)器人所受重力、慣性力及地面反力三者合力矢的延長線與地面的交點(diǎn)。雙足機(jī)器人一只腳著地時(shí),ZMP點(diǎn)必須落在腳掌的范圍內(nèi);雙腳著地時(shí),則位于兩只腳掌形成的凸多邊形內(nèi)。在ZMP點(diǎn),機(jī)器人所受的側(cè)向力和力矩都為零。
1971年,英國人I·Kato試制了“Wap3”,最大步幅15mm,周期45s。1971年至1986年間,英國牛津大學(xué)的Wit等人制造并完善了一個(gè)兩足步行機(jī)器人,該機(jī)器人能在平地上行走良好,步速達(dá)到0.23m/s[4]。
加拿大的Tad·McGee主要研究被動式兩足機(jī)器人,即在無任何外界輸入的情況下,靠重力和慣性力實(shí)現(xiàn)步行運(yùn)動。1989年,他建立了平面型的兩足步行機(jī)構(gòu),兩腿為直桿機(jī)構(gòu),沒有膝關(guān)節(jié),每條腿各由一個(gè)小電機(jī)來控制腿的伸縮,無任何主動控制和能量供給,具有簡單二級針擺特征,放在斜坡上,可依靠重力,實(shí)現(xiàn)動態(tài)步行。
法國BIP2000計(jì)劃是由法國de mecanique des Soloders de Poiters實(shí)驗(yàn)室和INRIA機(jī)構(gòu)合作的一個(gè)項(xiàng)目。其目的是建立一套可以適應(yīng)未知條件行走的兩足機(jī)器人系統(tǒng),設(shè)計(jì)了一個(gè)具有15個(gè)自由度的雙足步行機(jī)器人(只有軀干和腿)。
現(xiàn)代機(jī)器人發(fā)展最迅速的是有“機(jī)器人王國”之稱的日本。其中最具有代表性的研究機(jī)構(gòu)有:加藤實(shí)驗(yàn)室、日本早稻田大學(xué)、日本東京大學(xué)、日本東京理工學(xué)院、日本機(jī)械學(xué)院、松下電工、本田公司和索尼公司等。
日本早稻田大學(xué)的加藤一郎教授于1968年率先展開了雙足步行機(jī)器人的研制工作,并先后研制出WAP系列樣機(jī)。1969年研制出WAP-1平面自由度步行機(jī)器人,該機(jī)器人具有六個(gè)自由度,每條腿有髖、膝、踝三個(gè)關(guān)節(jié);關(guān)節(jié)處使用人造橡膠肌肉,通過充氣、排氣引起肌肉收縮,肌肉的收縮牽引關(guān)節(jié)轉(zhuǎn)動從而實(shí)現(xiàn)步行。1971年,研制出WAP-3型雙足機(jī)器人,仍采用人工肌肉,具有11個(gè)自由度,能在平地、斜坡和階梯上行走;該機(jī)器人重13Okg,高0.9m,實(shí)現(xiàn)步幅15cm,每步45s的靜步行;同年又研制出WL-5雙足步行機(jī)器人,該機(jī)器人采用液壓驅(qū)動,具有11個(gè)自由度,下肢作三維運(yùn)動,上軀體左右擺動以實(shí)現(xiàn)雙足機(jī)器人重心的左右移動。1973年,在WAP-5的基礎(chǔ)上配置機(jī)械手及人工視覺、聽覺等裝置組成自主式機(jī)器人WAROT-1。 1980年,推出WL-9DR雙足機(jī)器人,該機(jī)器人采用預(yù)先設(shè)計(jì)步行方式的程序控制方法,通過對步行運(yùn)動的分析及重復(fù)實(shí)驗(yàn)設(shè)計(jì)步態(tài)軌跡,用設(shè)計(jì)出的步態(tài)控制機(jī)器人的步行運(yùn)動,該機(jī)器人采用了以單腳支撐期為靜態(tài),雙腳切換期為動態(tài)的準(zhǔn)動態(tài)步行方案,實(shí)現(xiàn)了步幅45cm,每步9s的準(zhǔn)動態(tài)步行。1984年,研制出采用踝關(guān)節(jié)力矩控制的WL-10DR雙足機(jī)器人,增加了踝關(guān)節(jié)力矩控制,將一個(gè)步行周期分為單腳支撐期和轉(zhuǎn)換期。1986年,又成功研制了 WL-12(R)雙足機(jī)器人,該機(jī)器人通過軀體運(yùn)動來補(bǔ)償下肢的任意運(yùn)動,實(shí)現(xiàn)了步行周期1.3s,步幅30cm的平地動態(tài)步行。
日本東京大學(xué)的Jouhou System Kougaka實(shí)驗(yàn)室研制了H5、H6型仿人型雙足步行機(jī)器人。該機(jī)器人總共有30個(gè)自由度,其中在H5型的步態(tài)規(guī)劃設(shè)計(jì)中充分考慮了動態(tài)平衡條件,采用遺傳算法來實(shí)現(xiàn)上體的補(bǔ)償運(yùn)動以補(bǔ)償ZMP軌跡的跟蹤,上體運(yùn)動的軌跡用三次樣條插值來實(shí)現(xiàn)。在H5雙足機(jī)器人的頭部安裝有兩個(gè)CCD彩色攝像頭,可以定位前面的物體并能夠在CCD的協(xié)助下用7自由度的手來抓取的目的。
日本機(jī)械學(xué)院的S·Kajita等針對一臺具有4臺前向驅(qū)動電機(jī)且全部安裝在機(jī)器人的上體的五連桿平面型雙足步行機(jī)器人Meltran Ⅰ,研究其動態(tài)行走的控制方法。他根據(jù)機(jī)器人機(jī)構(gòu)質(zhì)量幾乎完全集中在上體的事實(shí),為使雙足步行機(jī)器人實(shí)現(xiàn)穩(wěn)定、周期性的動態(tài)行走,對機(jī)器人上體采用了約束控制方法,提出了一種理想的線性倒立擺模型。同時(shí)又提出了機(jī)構(gòu)軌道能量守恒的概念,來求解各個(gè)關(guān)節(jié)運(yùn)動軌跡及輸入力矩,實(shí)現(xiàn)了在已知不平整地面上的穩(wěn)定動態(tài)步行。1996年他們又在此樣機(jī)的基礎(chǔ)上加載了超聲波視覺傳感器以實(shí)現(xiàn)實(shí)時(shí)提供地面信息的功能。將視覺傳感器系統(tǒng)與針對線性倒立擺所提出的控制模式相結(jié)合構(gòu)成自適應(yīng)步態(tài)控制系統(tǒng),使MeltranⅡ成功地實(shí)現(xiàn)了在未知路面上的動態(tài)行走。
代表雙足步行機(jī)器人和擬人機(jī)器人研究最高水平的是本田公司和索尼公司。他們代表了當(dāng)今兩足步行機(jī)器人和擬人型機(jī)器人發(fā)展的最高水平。本田公司從1986年至今己經(jīng)推出了P系列1,2,3型機(jī)器人。并且于2000年11月20日,推出了新型雙足步行機(jī)器人“ASIMO(Advanced Step in Innovative Mobility)”,“ASIMO”和“P3”相比,實(shí)現(xiàn)了小型輕量化,使其更容易適應(yīng)人類的生活空間,通過提高雙腳步行技術(shù) 使其更接近人類的步行方式。雙腳步行技術(shù)方面采用了新開發(fā)“I-WALK(Intelligent Real-time Flexible Walk)”。I-WALK是在過去的步行技術(shù)的基礎(chǔ)上組合了新的“預(yù)測運(yùn)動控制功能”,它可以實(shí)時(shí)預(yù)測以后的動作,并且據(jù)此事先移動重心來改變步調(diào)。過去由于不能進(jìn)行預(yù)測運(yùn)動控制,當(dāng)從直行改為轉(zhuǎn)彎時(shí),必須先停止直行動作后才可以轉(zhuǎn)彎。
索尼公司于2000年11月21日在四足娛樂機(jī)器人AIBO的基礎(chǔ)上推出了人形娛樂型機(jī)器人SDR-3X(Sony Dream Robot-3X)。SDR-3X:頭部2個(gè)自由度、軀干2個(gè)自由度、手臂4 × 2個(gè)自由度、下肢和足部6 × 2個(gè)自由度,共計(jì)24個(gè)自由度。2002年又推出SDR-4X,采用64位RISC處理器,64MBDRAM,共有38個(gè)自由度(頭部4個(gè),身體2個(gè),胳膊 5×2=10個(gè),腿部6×2=12個(gè),獨(dú)立的5個(gè)手指5× 2=10個(gè))。2003年12月18日,索尼公司通過對控制系統(tǒng)和ISA(Intelligent Servo Actuator)的改進(jìn)、增加輸出力矩等方法,使QRIO在世界上第一次實(shí)現(xiàn)了兩足步行機(jī)器人的跑動,QRIO可以在跑步時(shí)滯空6ms,雙腳跳躍時(shí)滯空 10ms。
2005年1月12日,由日本產(chǎn)業(yè)技術(shù)綜合研究所的比留川博等人開發(fā)出一臺取名“HRP-2”雙足擬人機(jī)器人亮相東京。該機(jī)器人身高154cm,體重58kg。研究人員先請民間藝術(shù)家跳舞,用特殊攝像機(jī)拍攝后將畫面輸入電腦,并對手、腳、頭、腰等32個(gè)部位的動作進(jìn)行解析,然后把有關(guān)解析數(shù)據(jù)輸入給機(jī)器人,最后利用這些數(shù)據(jù)來控制機(jī)器人手的動作和腳步等,使“HRP-2”可以和人一樣動作連貫,翩翩起舞。
1.3.4 國內(nèi)研究概況
國內(nèi)雙足步行機(jī)器人的研制工作起步較晚,我國是從20世紀(jì)80年代開始雙足步行機(jī)器人領(lǐng)域的研究和應(yīng)用的。1986年,我國開展了“七五”機(jī)器人攻關(guān)計(jì)劃,1987年,我國的“863”高技術(shù)計(jì)劃將機(jī)器人方面的研究開發(fā)列入其中。目前我國從事機(jī)器人研究與應(yīng)用開發(fā)的單位主要是高校和有關(guān)科研院所等。最初我國進(jìn)行機(jī)器人技術(shù)研究的主要目的是跟蹤國際先進(jìn)的機(jī)器人技術(shù),隨后取得了一定的成就。
哈爾濱工業(yè)大學(xué)自1986年開始研究雙足步行機(jī)器人[ 5~9 ],先研制成功靜態(tài)步行雙足機(jī)器人HIT-Ⅰ,高110cm,重70kg,有10個(gè)自由度,實(shí)現(xiàn)平地上的前進(jìn)、左右側(cè)行以及上下樓梯的運(yùn)動,步幅45cm,步速為10秒每步,后來又相繼研制成功了HIT-Ⅱ和HIT-Ⅲ,重42kg,高103cm,有12個(gè)自由度,實(shí)現(xiàn)了步長24cm,步速2.3秒每步的步行。目前正在研制的HIT-Ⅳ機(jī)器人,全身可有52個(gè)自由度,其在運(yùn)動速度和平衡性方面都優(yōu)于前三型行走機(jī)器人。
國防科技大學(xué)在1988年春成功地研制了一臺平面型6自由度的雙足機(jī)器人KDW-Ⅰ[10~11],它能前進(jìn)、后退和上下樓梯,最大步幅為40cm,步速為4s每步,1989年又研制出空間型KDW-Ⅱ,有10個(gè)自由度,高69cm,重13kg,實(shí)現(xiàn)進(jìn)退、上下臺階的靜態(tài)穩(wěn)定步行以及左右的準(zhǔn)動態(tài)步行。1990年在KDW-Ⅱ的平臺上增加兩個(gè)垂直關(guān)節(jié),發(fā)展成KDW-Ⅲ,有12個(gè)自由度,具備了轉(zhuǎn)彎功能,實(shí)現(xiàn)了實(shí)驗(yàn)室環(huán)境的全方位行走。1995年實(shí)現(xiàn)動態(tài)行走,步速0.8s每步,步長為20cm~22cm,最大斜坡角度達(dá)13度。2000年底在KDW-Ⅲ的基礎(chǔ)上研制成功我國首臺仿人形機(jī)器人“先行者”,動態(tài)步行,可在小偏差、不確定的環(huán)境行走,周期達(dá)每秒兩步,高1.4m,重20kg,有頭、眼、脖、身軀、雙臂、雙足,且具備一定的語言功能。
上海交通大學(xué)于1999年研制的仿人形機(jī)器人SFHR,腿部和手臂分別有12和10個(gè)自由度,身體上有2個(gè)自由度。共有24個(gè)自由度,實(shí)現(xiàn)了周期3.8s,步長10cm的步行運(yùn)動。機(jī)器人本體上裝有2個(gè)單軸陀螺和一個(gè)三軸傾斜計(jì),用于檢測機(jī)器人的姿態(tài)信息,并配備了富士通公司的主動視覺系統(tǒng),是研究通用機(jī)器人學(xué)、多傳感器集成以及控制算法良好的實(shí)驗(yàn)平臺。
北京理工大學(xué)在歸國博士黃強(qiáng)教授的帶領(lǐng)下,高起點(diǎn)地進(jìn)行仿人形機(jī)器人研究,于2002年12月通過驗(yàn)收的仿人形機(jī)器人BHR-1,高 158cm,重76kg,32個(gè)自由度,步幅0.33m,步速每小時(shí)1公里。能夠根據(jù)自身力覺、平衡覺等感知機(jī)器人自身的平衡狀態(tài)和地面高度的變化,實(shí)現(xiàn)未知地面的穩(wěn)定行走和太極拳表演,使中國成為繼日本之后,第二個(gè)研制出無外接電纜行走,集感知、控制、驅(qū)動、電源和機(jī)構(gòu)于一體的高水平仿人形機(jī)器人國家。
此外,清華大學(xué)正在研制仿人形機(jī)器人THBIP-Ⅰ,高1.7m,重130kg,32個(gè)自由度,在清華大學(xué)985計(jì)劃的支持下,項(xiàng)目也在不斷取得進(jìn)展。南京航空航天大學(xué)曾研制了一臺8自由度空間型雙足步行機(jī)器人,實(shí)現(xiàn)靜態(tài)步行功能[12~13]。
1.4 本課題的主要工作
本課題源于“第一屆全國大學(xué)生機(jī)械創(chuàng)新設(shè)計(jì)大賽”中兩足行走機(jī)器人。目前,機(jī)器人大多以輪子的形式實(shí)現(xiàn)行走功能階段。真正模仿人類用腿走路的機(jī)器人還不多,雖有一些六足、四足機(jī)器人涌現(xiàn),但是兩足機(jī)器人還是鳳毛麟角。在機(jī)器人研究領(lǐng)域處于國際領(lǐng)先水平的日本,推出了諸如舞蹈機(jī)器人等雙足行走機(jī)器人,但成千上萬的傳感器和復(fù)雜的控制系統(tǒng)使這類機(jī)器人造價(jià)非常昂貴。我們這個(gè)課題,探索設(shè)計(jì)僅靠巧妙的機(jī)械裝置和簡單的控制系統(tǒng)就能實(shí)現(xiàn)模擬人類行走的機(jī)器人。其分功能有:交替邁腿、搖頭、擺大臂、擺小臂。
2 雙足機(jī)器人本體結(jié)構(gòu)設(shè)計(jì)分析
2.1 引言
兩足步行機(jī)器人是研究兩足步行的實(shí)驗(yàn)對象,不同的兩足步行機(jī)器人在自由度、驅(qū)動方式、重量、高度、結(jié)構(gòu)特征等方面都存在很大的差異。機(jī)器人的結(jié)構(gòu)不同,其控制方式也有所區(qū)別。為了對兩足步行機(jī)器人進(jìn)行深入的研究,使其實(shí)現(xiàn)預(yù)定的步行功能,必須對其機(jī)構(gòu)有深入的了解和認(rèn)識。
2.2 兩足機(jī)器人的結(jié)構(gòu)分析
兩足步行機(jī)器人是對人類自身的模仿,但是人類總共有上肢52對,下肢62對,背部112對,胸部52對,腰部8對,頸部16對,頭部25對之多的肌肉。從目前的科學(xué)發(fā)展情況來看,要控制具有400個(gè)雙作用式促進(jìn)器的多變量系統(tǒng)是不可能的[19],因此,在設(shè)計(jì)步行機(jī)械時(shí),人們只考慮移動的基本功能。例如,只考慮在平地或者具有已知障礙物的情況下的步行。
鄭元芳博士從仿生學(xué)的角度對類人機(jī)器人的腿部自由度配置進(jìn)行了深入的研究,得出關(guān)節(jié)扭矩最小條件下兩足步行機(jī)器人的自由度配置。他認(rèn)為髖部和踝部設(shè)兩個(gè)自由度,可使機(jī)器人在不平地面上站立,髖部再加一個(gè)扭轉(zhuǎn)自由度,可改變行走方向,踝關(guān)節(jié)處加一個(gè)旋轉(zhuǎn)自由度可使腳板在不規(guī)則表面上落地,這樣機(jī)器人的腿部需要有7×2個(gè)自由度(髖關(guān)節(jié)3個(gè),膝關(guān)節(jié)1個(gè),踝關(guān)節(jié)3個(gè)[10])。
但是,無論現(xiàn)在的兩足步行機(jī)器人還是擬人機(jī)器人都還只能在規(guī)則路面上行走,所以各研究機(jī)構(gòu)都選擇了6×2個(gè)自由度(髖關(guān)節(jié)3個(gè),膝關(guān)節(jié)1個(gè),踝關(guān)節(jié)2個(gè)),如:哈爾濱工業(yè)大學(xué)的HIT-Ⅲ、國防科技大的“先行者”。
2.3 機(jī)器人設(shè)計(jì)思路
由于這個(gè)課題是本校的第一次出現(xiàn),沒有可以借鑒的資料,所以我們這個(gè)小組通過各種途徑了解各種兩足機(jī)器人,通過模仿其他設(shè)計(jì)成功的機(jī)器人為設(shè)計(jì)主要思路,來設(shè)計(jì)我們的兩足步行機(jī)器人,如圖2.1,是我們這次設(shè)計(jì)的主要依據(jù)。
圖2.1 兩足機(jī)器人的雛形
2.4 機(jī)器人設(shè)計(jì)方案
由于我們要求設(shè)計(jì)的是比較簡單的兩足機(jī)器人,所以有關(guān)平衡和ZMP等計(jì)算全部省略,我們設(shè)計(jì)時(shí)候盡量把兩足機(jī)器人整體高度設(shè)計(jì)的盡量的矮一點(diǎn),兩面設(shè)計(jì)的對稱,腳設(shè)計(jì)盡量的大一點(diǎn),以此達(dá)到兩足步行機(jī)器人的平衡。
通過上面所述和查閱相關(guān)兩足機(jī)器人行走的視屏,我們設(shè)計(jì)了一個(gè)17自由度的雙足步行機(jī)器人模型,如圖2.2所示。顯示的結(jié)構(gòu)特征就是采用多關(guān)節(jié)型結(jié)構(gòu)。動力源采用舵機(jī)直接驅(qū)動。這樣不但可以實(shí)現(xiàn)結(jié)構(gòu)緊湊、傳動精度高以及大大增加關(guān)節(jié)所能達(dá)到的最大角度,而且驅(qū)動源全為干電池,便于集中控制和程序化控制。
圖2.2 雙足步行機(jī)器人模型
圖2.2雙足機(jī)器人,頭部僅一個(gè)旋轉(zhuǎn)自由度,它和身體相連接(圖2.3)。肩關(guān)節(jié)、大臂和小臂各一個(gè)自由度(圖2.4,圖2.5),髖關(guān)節(jié)一個(gè)自由度,大腿(圖2.6,圖2.7)2個(gè)自由度,小腿和腳步各一個(gè)自由度。各個(gè)關(guān)節(jié)的活動范圍理論上是180度(由于零件之間互相干涉,關(guān)節(jié)之間活動范圍以實(shí)際為準(zhǔn))。
圖2.3 機(jī)器人頭部和身體
圖2.4 機(jī)器人左手臂圖 圖2.5 機(jī)器人右手臂
圖2.6 機(jī)器人左腿 圖2.7 機(jī)器人左腿
雙足步行機(jī)器人的一個(gè)主要問題就是雙足動態(tài)步行的固有不穩(wěn)定性。為了使其穩(wěn)定行走,機(jī)器人本體設(shè)計(jì)和行走步態(tài)規(guī)劃都很重要。在進(jìn)行機(jī)器人本體設(shè)計(jì)時(shí)需要著重考慮的問題有關(guān)節(jié)驅(qū)動力矩的限制,主要機(jī)構(gòu)的剛度,擺動腿著地時(shí)沖擊載荷對機(jī)器人本體可能帶來的損壞,桿件間連接,機(jī)體重量、材料以及易于操作維修等等。
2.5 驅(qū)動方式的選擇
由于此次設(shè)計(jì)的兩足步行機(jī)器人只是達(dá)到簡單運(yùn)動,而且為了使兩足步行機(jī)器人行走穩(wěn)定,所以對機(jī)器人的各個(gè)關(guān)節(jié)旋轉(zhuǎn)的角度和配合都需要比較精確的控制,所以所有的驅(qū)動都是由舵機(jī)來完成如圖2.8。
圖2.8 舵機(jī)
3 雙足機(jī)器人的具體制作
3.1 雙足機(jī)器人的材料選擇
材料的選取要本著重量輕,高剛度的原則。機(jī)器人本體主體材料選用鋁合金(LY12),這種材料重量輕、硬度高,強(qiáng)度遠(yuǎn)遠(yuǎn)高于普通鋁合金。
3.2 雙足機(jī)器人的零件加工
3.2.1 加工機(jī)器的選擇
(1) 由于選擇的是質(zhì)量輕,高剛度的鋁合金板,厚度只有1mm,所以選擇最佳的加工方法是電火花線切割加工。
(2) 各個(gè)鋁板加工好以后,需要精確折彎,所以選擇折彎機(jī)來進(jìn)行折彎。
3.2.2 線切割的相關(guān)介紹
(1)概述
電火花線切割加工(Wire Cut Electrical Discharge Machining ,簡稱WEDM)是在電火花加工基礎(chǔ)上,于20世紀(jì)50年代末最早在前蘇聯(lián)發(fā)展起來的一種新的工藝形式,它是利用絲狀電極(鉬絲或銅絲,見圖3.1)靠火花放電對工件進(jìn)行切割,簡稱線切割。
圖3.1 鉬絲
(2)加工原理、特點(diǎn)及應(yīng)用
電火花線切割加工的基本原理(如圖3.2)是利用快速移動的電極絲,對工件進(jìn)行脈沖火花放電,腐蝕工件表面,使工件材料局部熔化和氣化,從而達(dá)到切割工件,去除材料的目的。
圖3.2 電火花加工原理圖
電火花線切割加工屬于特種加工。它與傳統(tǒng)的機(jī)械加工相比,有如下優(yōu)點(diǎn):
(a)非接觸式,適合高硬度難切削材料的加工。
(b)十分適合復(fù)雜形孔及外形的加工。
(c)切縫細(xì),節(jié)省寶貴的金屬材料。
(d)加工的尺寸精度高,表面粗糙度好。
(e)易于實(shí)現(xiàn)數(shù)字控制。
(f)加工的殘余應(yīng)力較小。
電火花線切割加工也有它的局限性。這主要體現(xiàn)在以下幾個(gè)方面:
(a)僅限于金屬等導(dǎo)電材料的加工。
(b)加工速度較慢,生產(chǎn)效率較低。
(c)存在電極損耗和二次放電。
(d)最小角部半徑有限制。
(3)線切割機(jī)床簡介
一臺普通的線切割機(jī)床的結(jié)構(gòu)組成如圖3.3所示。它總體上由主機(jī),脈沖電源,數(shù)控系統(tǒng)三部分組成。此外,機(jī)床的主機(jī)部分還附加了工作液循環(huán)系統(tǒng)。主機(jī)由床身、工作臺、運(yùn)絲機(jī)構(gòu)、絲架和工作液系統(tǒng)等組成,是機(jī)床的主要部分。脈沖電源又稱高頻電源,其作用是把普通的50HZ交流電轉(zhuǎn)換成高頻單向脈沖電壓。數(shù)控系統(tǒng)以電腦為核心,用程序?qū)崿F(xiàn)電極絲放電加工全過程的實(shí)時(shí)控制。
圖3.3 線切割機(jī)床
(4)線切割程序編制
線切割編程涵蓋了切割圖形、切割路徑及切割次數(shù)等工藝信息。線切割程序有著標(biāo)準(zhǔn)的指令格式。常用的有兩種:G指令和3B指令,可根據(jù)實(shí)際需要來選擇。
如今的線切割機(jī)床都帶有自動編程功能,即操作者只需將要切割的圖形在機(jī)器繪制出來并存盤,系統(tǒng)會自動分析并生成加工程序,避免的煩瑣的手工編程,所以兩足機(jī)器人的所有零件都是由線切割機(jī)床自動編程[14]。
3.2.3 折彎機(jī)的相關(guān)簡單介紹
圖3.4是折彎機(jī)機(jī)床,圖3.5是折彎機(jī)刀口。
圖3.4 折彎機(jī)機(jī)床 3.5 折彎機(jī)刀口
3.3 兩足機(jī)器人的組裝
3.3.1 舵機(jī)和部分配件的組裝
用M3×11的螺栓將配件和舵機(jī)組裝在一起,如圖3.4所示。注意在安裝舵機(jī)時(shí)候,首先將螺栓放入側(cè)面的孔中,然后通過四個(gè)螺栓緊固舵機(jī)。數(shù)據(jù)線從鋁板側(cè)面的方孔穿過,這樣安裝才不損壞數(shù)據(jù)線和舵機(jī)外殼。
圖3.4 舵機(jī)和配件組裝
3.3.2 兩足步行機(jī)器人的兩個(gè)上肢的組裝
兩足機(jī)器人每只上肢由兩個(gè)舵機(jī)組成,具有兩個(gè)自由度。安裝前將舵機(jī)初始的角度設(shè)定在90°,這樣有利于上肢有擺動的余地。因此舵機(jī)最大角度是180°。當(dāng)把安裝角度設(shè)定在90°時(shí),與配件相配合不會放生干涉,可以順利的完成一些指定動作,如圖3.5所示。
圖3.5 機(jī)器人兩上肢
3.3.3 兩足機(jī)器人軀干的組裝
軀干由四個(gè)舵機(jī)組成,具有四個(gè)自由度,控制胳膊前后旋轉(zhuǎn)兩個(gè),控制大腿左右擺動兩個(gè)。安裝前還是將舵機(jī)初始的角度設(shè)定在90°,配件由螺栓固定,為了美觀,螺栓均放在里面,由于受到空間限制,操作比較困難,但是安裝時(shí)候一定要注意每個(gè)螺栓必須緊固牢靠,防止松動,如圖3.6。
圖3.6 機(jī)器人軀干
3.3.4 兩足機(jī)器人腿部的組裝
兩足機(jī)器人腿部是最為重要的,所以安裝時(shí)候得更加小心仔細(xì)。每個(gè)下肢由四個(gè)舵機(jī)組成,具有四個(gè)自由度,安裝前舵機(jī)還是將初始角度設(shè)置在90°,另外安裝時(shí)候
注意兩個(gè)腿之間的干涉,如圖3.7。
圖3.7 機(jī)器人左腿
3.3.5 兩足機(jī)器人頭部的安裝
兩足機(jī)器人頭部安裝比較容易,直接將頭部用螺絲緊固在舵機(jī)上就可以了,如圖3.8。
圖3.8 機(jī)器人頭部
如圖3.9,3.10所示,是兩足步行機(jī)器人的總裝圖,是將17臺舵機(jī)以積木的方式搭成人形的。機(jī)體大部分是由舵機(jī)組成的,各個(gè)舵機(jī)是由一些鋁合金件連接而成[15]。
圖 3.9 機(jī)器人總裝圖 圖 3.10機(jī)器人總裝圖
3.4 兩足機(jī)器人相關(guān)數(shù)據(jù)
兩足機(jī)器人所有零部件清單,如表3.1。
表3.1 零部件清單
名稱 型號 數(shù)量
舵機(jī) 12(N×m) 17
鋁制零件 42
螺栓螺帽 M3×11(mm) 145
3.5兩足機(jī)器人總體尺寸
兩足機(jī)器人的相關(guān)尺寸,如表3.2
表3.2 總體尺寸
名稱 尺寸(高×寬mm)
總體 385×242
手臂 175×50
腿部 185×40
腳 64×20
3.6舵機(jī)具體參數(shù)
舵機(jī)的相關(guān)參數(shù),如表3.3
表3.3 舵機(jī)參數(shù)
尺寸
重量
速度
扭力
使用電壓
40.8*19.9*37.3mm
56.3g
0.24sec/60度
12公斤/厘米
4.8V~7.2V
4 課題總結(jié)
在過去的三個(gè)月里,經(jīng)歷了機(jī)器人總體方案的研究和選擇,材料的購買和加工,到最后的組裝和調(diào)試,遇到了很多的困難。
我們總結(jié)了小組的不足,希望給下屆師弟師妹,例如:(1)何選擇一個(gè)好的可行的總體制作方案。我們的設(shè)計(jì)方案是依靠網(wǎng)上做好的機(jī)器人為模板,進(jìn)行模仿,希望下屆能夠設(shè)計(jì)出自己開發(fā)的機(jī)器人。(2)材料如何選擇。我們在材料選擇時(shí),試驗(yàn)了很多的材料,如塑料,鋁板,不銹鋼,等等,但是由于要求強(qiáng)度高,剛度高,質(zhì)量要輕,所以選擇了鋁板。但是,鋁板相對較軟,在線切割時(shí)候很容易使鉬絲斷掉,所以給加工帶來了很多不便,希望能找到更好的材料。(3)材料組裝時(shí)候的問題。由于理想和現(xiàn)實(shí)存在著差異,所以當(dāng)材料加工出來進(jìn)行組裝時(shí),出現(xiàn)很多問題,由于當(dāng)時(shí)設(shè)計(jì)盡量緊湊,以降低重心,但是在組裝時(shí)候,出現(xiàn)了很多的干涉,裝螺母螺帽的時(shí)候由于結(jié)構(gòu)間隙太小,安裝比較麻煩,所以希望下屆在總體設(shè)計(jì)時(shí),在保證緊湊的同時(shí),要留出一定間隙保證不干涉和足夠的安裝間隙。
以上就是本次畢業(yè)設(shè)計(jì)中本人所遇到的典型問題,希望給下屆的畢業(yè)設(shè)計(jì)帶來啟發(fā)。同時(shí),希望下屆的師弟師妹能夠把這個(gè)課題做的更好。
結(jié)束語
本論文是關(guān)于兩足機(jī)器人行走結(jié)構(gòu)部分的設(shè)計(jì)。從了解各式各樣的兩足機(jī)器人開始,到分析選擇總體方案、繪制立體圖和平面圖、材料的選擇、配件的購買和加工、以及進(jìn)行機(jī)器人的組裝等的全過程,是對我所學(xué)四年知識的一個(gè)綜合檢查,也是對我獨(dú)立思考和解決問題的一次考驗(yàn)。盡管我的設(shè)計(jì)還有很多不足的地方,需要改進(jìn)的地方還很多,但我相信:只要我們不懈的努力,繼續(xù)加以改進(jìn)設(shè)計(jì),總結(jié)這次的經(jīng)驗(yàn)和教訓(xùn),給下屆留下寶貴的經(jīng)驗(yàn),我想他們一定會做的更好。
通過這3個(gè)月的設(shè)計(jì),使我對自己所學(xué)的知識有了更深入了解;在指導(dǎo)老師幫助下,通過收集各種有關(guān)資料所解決的畢業(yè)設(shè)計(jì)問題,為我即將走上工作崗位,獨(dú)自去面對各種挑戰(zhàn),出色地完成工作任務(wù)打下了一定的基礎(chǔ)。
由于本人水平有限,經(jīng)驗(yàn)少。文中定有許多不妥甚至錯(cuò)誤之處,請各位老師給予指正和教導(dǎo),本人表示深深的謝意。
致 謝
首先,我要感謝的是指導(dǎo)老師龔光榮教授和劉艷老師,在他們的悉心指導(dǎo)下,我順利完成畢業(yè)設(shè)計(jì)。在設(shè)計(jì)與制作的這段時(shí)間里,他們嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,平易近人的生活作風(fēng),孜孜不倦的育人精神,給我留下了深刻的印象。
從今年3月初到6月底,經(jīng)過外文翻譯,開題報(bào)告,進(jìn)行設(shè)計(jì)實(shí)驗(yàn),到完成畢業(yè)論文,一步一步都離不開劉老師的悉心指導(dǎo)。在課題進(jìn)行期間,老師對我的課題方向的了解深度與研究深度,嚴(yán)謹(jǐn)而一絲不茍的治學(xué)態(tài)度,平和而循循善誘的教學(xué)態(tài)度,不僅在學(xué)術(shù)課題上給我很深的指導(dǎo),更是讓我了解了很多為人做研究的道理,使我受益匪淺。在此對劉艷老師表達(dá)我最誠摯的感謝,感謝這幾個(gè)月來對我的巨大幫助。并祝劉艷老師在今后教學(xué)研究中取得更大的成就!
其次,還要感謝一直努力工作的其他隊(duì)友:吳玉坤、徐超、黃俊、徐昕晏
最后感謝各位評審老師,能夠在百忙中抽出時(shí)間,對畢業(yè)論文提出意見,非常感謝你們的指導(dǎo)!祝你們身體健康,萬事如意!
參 考 文 獻(xiàn)
[1] 周遠(yuǎn)清,張?jiān)倥d等編著. 智能機(jī)器人系統(tǒng)[M]. 北京: 清華大學(xué)出版社,1989.
[2] 蔣新松主編. 機(jī)器人學(xué)導(dǎo)論[M]. 沈陽: 遼寧科學(xué)技術(shù)出版社,1994.
[3] 方建軍,何廣平. 智能機(jī)器人[M]. 北京:化學(xué)工業(yè)出版社,2004.
[4] 張永學(xué). 雙足機(jī)器人步態(tài)規(guī)劃及步行控制研究[D]. 哈爾濱工業(yè)大學(xué)博士學(xué)位論文. 2001.
[5] 劉志遠(yuǎn). 兩足機(jī)器人動態(tài)行走研究[D]. 哈爾濱工業(yè)大學(xué)博士論文. 1991.
[6] 劉志遠(yuǎn),戴紹安,裴潤,張栓,傅佩深. 零力矩點(diǎn)與兩足機(jī)器人動態(tài)行走穩(wěn)定性的關(guān)系[N]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào). 1994.
[7] 紀(jì)軍紅. HIT-Ⅱ雙足步行機(jī)器人步態(tài)規(guī)劃研究[D]. 哈爾濱工業(yè)大學(xué)博士論文,2000.
[8] 麻亮,紀(jì)軍紅,強(qiáng)文義,傅佩深. 基于力矩傳感器的雙足機(jī)器人在線模糊步態(tài)調(diào)整器設(shè)計(jì)[R]. 2000.
[9] 竺長安. 兩足步行機(jī)器人系統(tǒng)分析、設(shè)計(jì)及運(yùn)動控制[D]. 國防科技大學(xué)博士論文. 1992.
[10] 馬宏緒. 兩足步行機(jī)器人動態(tài)步行研究[D]. 國防科技大學(xué)博士論文. 1995.
[11] 包志軍. 仿人型機(jī)器人運(yùn)動特性研究[D]. 上海交通大學(xué)博士論文. 2000.
[12] 孫富春,朱紀(jì)洪,劉國棟等. 機(jī)器人學(xué)導(dǎo)論-分析、系統(tǒng)及應(yīng)用[M]. 北京:電子工業(yè)出版社,2004.
[13] 柳洪義,宋偉剛. 機(jī)器人技術(shù)基礎(chǔ)[M]. 北京:冶金工業(yè)出版社,2002
[14] 劉晉春,白基成,郭永豐. 特種加工[M]. 北京:機(jī)械工業(yè)出版社,2008.3.
[15] 解侖,王志良,李華俊.雙足步行機(jī)器人制作技術(shù)[M]. 北京:機(jī)械工業(yè)出版社,2008.4.
畢業(yè)設(shè)計(jì)(論文)外文資料翻譯
系 部: 機(jī)械工程系
專 業(yè): 機(jī)械工程及自動化
姓 名:
學(xué) 號:
外文出處: Advance online publication:
4 August 2006
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導(dǎo)教師評語:
該生的外文翻譯基本正確,沒有嚴(yán)重的語法或拼寫錯(cuò)誤,已達(dá)到本科畢業(yè)的水平。
簽名:
年 月 日
附件1:外文資料翻譯譯文
對移動式遙控裝置的智能控制——使用2型模糊理論
摘要:我們針對單輪移動式遙控裝置的動態(tài)模型開發(fā)出一種追蹤控制器,這種追蹤控制器是建立在模糊理論的基礎(chǔ)上將運(yùn)動控制器和力矩控制器整合起來的裝置。用計(jì)算機(jī)模擬來確定追蹤控制器的工作情況和它對不同航向的實(shí)際用途。
關(guān)鍵詞:智能控制、2型模糊理論、移動式遙控裝置
I. 介紹
由于受運(yùn)動學(xué)強(qiáng)制約束,移動遙控裝置是非完整的系統(tǒng)。描述此約束的恒等式不能夠明確的反映出遙控裝置在局部及整體坐標(biāo)系中的關(guān)系。因此,包括它們在內(nèi)的控制問題吸引了去年控制領(lǐng)域的注意力。
不同的方法被用來解決運(yùn)動控制的問題。Kanayama等人針對一個(gè)非完整的交通工具提出了一個(gè)穩(wěn)定的追蹤控制方案,這種方案使用了Lyapunov功能。Lee等人用還原法和飽和約束來解決追蹤控制。此外,大多數(shù)被報(bào)道過的設(shè)計(jì)依賴于智能控制方式如模糊邏輯控制和神經(jīng)式網(wǎng)絡(luò)。
然而上述提到的發(fā)表中大多數(shù)都集中在移動式遙控裝置的運(yùn)動模塊,即這些模塊是受速度控制的。而很少有發(fā)表關(guān)注到不完整的動力系統(tǒng),即受力和扭矩控制的模塊:布洛克。
在2005年12月15日被視為標(biāo)準(zhǔn)并且在2006年3月5日被公認(rèn)的手稿。這一著作在某種程度上受到DGEST——一個(gè)在Grant 493.05-P下的研究所的支持。研究者們同樣也受到了來自CONACYT——給予他們研究成果的獎學(xué)金的支持。
在這篇論文中我展現(xiàn)了一臺追蹤單輪移動式遙控裝置的控制器,這臺追蹤控制器用了一種控制條件如移動遙控裝置的速度達(dá)到了有效速度,還用了一種模糊理論控制器如給實(shí)際遙控裝置提供了必要扭矩。這篇論文的其余部分的結(jié)構(gòu)如下:第二部分和第三部分對問題作了簡潔描述,包括了單輪車移動遙控裝置的運(yùn)動和動力模塊和對追蹤控制器的介紹。第四部分用追蹤控制器列舉了些模擬結(jié)果。第五部分做出了結(jié)論。
II. 疑難問題陳述
A移動控制裝置
這個(gè)被看作單輪移動控制器的模型(見圖1),它是由兩個(gè)同軸驅(qū)動輪和一個(gè)自由前輪組成。
圖1. 旋轉(zhuǎn)移動機(jī)械手
運(yùn)動規(guī)律可見平面5的運(yùn)動方程式
q&=
M(q)&+V(q,q)v+G(q)= (1)
q= q是描述控制器位置的坐標(biāo)矢量,(x,y)是笛卡爾坐標(biāo),它指出了構(gòu)件的移動中心,θ是構(gòu)件朝向和x軸之間的夾角(夾角為逆時(shí)針形式);v為速度矢量,v 和w分別為長度和角速度; τ為輸入矢量,M是一個(gè)對稱的正定義的固定零件,R是一個(gè)向心的零件,G是重力矢量。等式(1,a)表示移動控制裝置的運(yùn)動或駕駛系統(tǒng)。注意到防滑條件強(qiáng)加了一個(gè)不完整的約束,也就是說這個(gè)移動控制裝置只能夠朝著驅(qū)動輪軸線的方向移動。
ycos-xsin=0 (2)
移動遙控裝置式的追蹤控制器構(gòu)造如下:一條特定的預(yù)想軌跡q和移動遙控裝置的方向,我們必須設(shè)計(jì)出一個(gè)控制器使其適用于合適的扭矩諸如測定的位置達(dá)到參考位置(由3式表示)。
(3)
為了達(dá)到控制目標(biāo),我們基于5的步驟,我們得到τ(t)利用模糊邏輯控制器(FLC)控制著輪系(1.a)。追蹤控制器的大體結(jié)構(gòu)見圖2
III.運(yùn)動模塊的控制
我們基于Kanayama等人提議的程序和Nelson等人解決運(yùn)動模塊的追蹤問題,這由V表示出來。假設(shè)軌跡q達(dá)到了(4)式的要求:
q= (4)
用遙控器的局部框架(圖1中的移動坐標(biāo)系),錯(cuò)誤的坐標(biāo)可被定義為:
e=T(q-q), ==(5)
輔助速度控制著輸入量,其可以對(1,a)實(shí)現(xiàn)追蹤。表示如下:
v=f(e,v), =(6)
其中k1, k2 and k3是連續(xù)的正整數(shù)
IV.模糊邏輯控制器
模糊邏輯控制器的目的是找出控制輸入量τ 如實(shí)際速度矢量v和速度矢量vc之間的關(guān)系
(7)
就像圖2中所顯示的一樣,根本上說FLC有兩個(gè)輸入變量相應(yīng)的引出兩個(gè)速度錯(cuò)誤,分別是長度和角度,且兩個(gè)輸出變量,驅(qū)動和旋轉(zhuǎn)輸入扭矩,分別為F和N,他們的作用分別是1的所有直角和2的梯形,且很容易被估算出來。
圖3和圖4描繪了N,C,P代表的模糊方框中的MFS結(jié)合了每一個(gè)輸入和輸出變量,這些變量都被包括在范圍[-1,1]中
圖2. 追蹤控制結(jié)構(gòu)
圖3. 輸入可變電壓 ev 和 ew
圖 4. 輸出的F和N
FLC中包含9條控制著輸入和輸出關(guān)系的直線,這采用了Mamdani形式的推論引擎,我們利用了萬有引力中心的方法來實(shí)現(xiàn)非模糊程序。在表格1中,我們表現(xiàn)了一種直線形式:
Rule i: 假如ev 是 G1 ,ew 是G2 那么F 是G3 ,N 是G4
Where G1..G4 are the fuzzy set associated to each variable and i= 1 ... 9.
表1 模糊尺組
In Table I, N means NEGATIVE, P means POSITIVE and C means ZERO.
V.模擬結(jié)果
在Matalb實(shí)現(xiàn)的模擬實(shí)驗(yàn)是用來測試移動式遙控裝置的追蹤控制器(在(1)中已有定義)。我們認(rèn)為初始位置q和 初始速度v。在圖5到圖8中,我們體現(xiàn)了對于情況1的模擬結(jié)果。位置和方向錯(cuò)誤分別見圖5和圖6,錯(cuò)誤可近似于零。追蹤軌跡(見圖7)也和預(yù)想的及其接近,速度錯(cuò)誤(見圖8)減小至0,達(dá)到了整個(gè)模擬過程中1秒內(nèi)的控制目標(biāo)。圖9是測試控制器的模擬簡圖。圖10是三個(gè)變量的追蹤錯(cuò)誤。最后,圖11是遺傳運(yùn)算法則的演化過程,這個(gè)通常用來查找模糊控制器的最佳參數(shù)。
圖 5.位置錯(cuò)誤參量值。(直線為x,虛線為y)
圖 6.方向錯(cuò)誤參量值
圖 7.移動遙控裝置運(yùn)動軌跡
圖 8. 速度錯(cuò)誤: 實(shí)線: 錯(cuò)誤在e, 虛線:錯(cuò)誤在 evw
圖 9 控制器的模擬板塊
圖10三個(gè)變量的跟蹤錯(cuò)誤
圖 11 查找最優(yōu)的方案仿真
表2為模糊控制器在25個(gè)在不同環(huán)境下所產(chǎn)生的模擬結(jié)果。從這個(gè)表中我們同樣選擇了不同的速度和位置參數(shù)
表2 不同模糊控制器實(shí)驗(yàn)仿真
VI.總結(jié)
追蹤控制器是將單輪移動遙控裝置的模糊邏輯控制器與可測定點(diǎn)的穩(wěn)定性和速度軌跡的動力學(xué)整合起來的。計(jì)算機(jī)模擬結(jié)果確定了這臺控制器可以實(shí)現(xiàn)我們的目標(biāo)。在以后的工作中,圖2中的控制結(jié)構(gòu)可以做些擴(kuò)展,比如說增加些跟蹤的準(zhǔn)確性或工作性能。
附件2:外文原文
Intelligent Control of an Autonomous Mobile Robot using Type-2 Fuzzy Logic
Abstract— We develop a tracking controller for the dynamic model of unicycle mobile robot by integrating a kinematic controller and a torque controller based on Fuzzy Logic Theory. Computer simulations are presented confirming the performance of the tracking controller and its application to different navigation problems.
Index Terms—Intelligent Control, Type-2 Fuzzy Logic, Mobile Robots.
I. INTRODUCTION
Mobile robots are nonholonomic systems due to the constraints imposed on their kinematics. The equations describing the constraints cannot be integrated simbolically to obtain explicit relationships between robot positions in local and global coordinate’s frames. Hence, control problems involve them have attracted attention in the control community in the last years [11].
Different methods have been applied to solve motion control problems. Kanayama et al. [10] propose a stable tracking control method for a nonholonomic vehicle using a Lyapunov function. Lee et al. [12] solved tracking control using backstepping and in [13] with saturation constraints. Furthermore, most reported designs rely on intelligent control approaches such as Fuzzy Logic Control [1][8][14][17][18][20] and Neural Networks [6][19].
However the majority of the publications mentioned above, has concentrated on kinematics models of mobile robots, which are controlled by the velocity input, while less attention has been paid to the control problems of nonholonomic dynamic systems, where forces and torques are the true inputs: Bloch
Manuscript received December 15, 2005 qnd accepted on April 5, 2006. This work was supported in part by the Research Council of DGEST under Grant 493.05-P. The students also were supported by CONACYT with scholarships for their graduate studies.
Oscar Castillo is with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (corresponding author phone: 52664-623-6318; fax: 52664-623-6318; e-mail: ocastillo@tectijuana.mx).
Patricia Melin is with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: harias@tectijuana.mx).
Arnulfo Alanis is with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: pmelin@tectijuana.mx)
Leslie Astudillo is a graduate student in Computer Science with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: pmelin@tectijuana.mx)
Jose Soria is a with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (e-mail: jsoria@ucsd.edu).
Luis Aguilar is with CITEDI-IPN Tijuana, Mexico(e-mail:laguilar@citedi.mx)
and Drakunov [2] and Chwa [4], used a sliding mode control to the tracking control problem. Fierro and Lewis [5] propose a dynamical extension that makes possible the integration of kinematic and torque controller for a nonholonomic mobile robot. Fukao et al. [7], introduced an adaptive tracking controller for the dynamic model of mobile robot with unknown parameters using backstepping.
In this paper we present a tracking controller for the dynamic model of a unicycle mobile robot, using a control law such that the mobile robot velocities reach the given velocity inputs, and a fuzzy logic controller such that provided the required torques for the actual mobile robot. The rest of this paper is organized as follows. Sections II and III describe the formulation problem, which include: the kinematic and dynamic model of the unicycle mobile robot and introduces the tracking controller. Section IV illustrates the simulation results using the tracking controller. The section V gives the conclusions.
II. PROBLEM FORMULATION
A. The Mobile Robot
The model considered is a unicycle mobile robot (see Fig. 1), it consist of two driving wheels mounted on the same axis and a front free wheel [3].
Fig. 1.
Fig. 1. Wheeled mobile robot.
The motion can be described with equation (1) of movement in a plane [5]:
Q&=
M(q)&+V(q,q)v+G(q)= (1)
Where q=is the vector of generalized coordinates which describes the robot position, (x,y) are the cartesian coordinates, which denote the mobile center of mass and θ is the angle between the heading direction and the x-axis(which is taken counterclockwise form);v= is the vector of velocities, v and w are the linear and angular velocities respectively; is the input vector,M(q)R is a symmetric and positive-definite inertia matrix, V(q,q)Ris the centripetal and Coriolis matrix,G(q)R is the gravitational vector. Equation (1.a) represents the kinematics or steering system of a mobile robot. Notice that the no-slip condition imposed a non-holonomic constraint described by (2), that it means that the mobile robot can only move in the direction normal to the axis of the driving wheels.
ycos-xsin=0 (2)
B. Tracking Controller of Mobile Robot Our control objective is established as follows: Given a desired trajectory qd(t) and orientation of mobile robot we must design a controller that apply adequate torque τ such that the measured positions q(t) achieve the desired reference qd(t) represented as (3):
(3)
To reach the control objective, we are based in the procedure of [5], we deriving a τ(t) of a specific vc(t) that controls the steering system (1.a) using a Fuzzy Logic Controller (FLC). A general structure of tracking control system is presented in the Fig. 2.
III. CONTROL OF THE KINEMATIC MODEL
We are based on the procedure proposed by Kanayama et al. [10] and Nelson et al. [15] to solve the tracking problem for the kinematic model, this is denoted as vc(t). Suppose the desired trajectory qd satisfies (4):
q= (4)
Using the robot local frame (the moving coordinate system x-y in figure 1), the error coordinates can be defined as (5):
e=T(q-q), ==(5)
And the auxiliary velocity control input that achieves tracking for (1.a) is given by (6):
v=f(e,v), =(6)
Where k1, k2 and k3 are positive constants.
IV. FUZZY LOGIC CONTROLLER
The purpose of the Fuzzy Logic Controller (FLC) is to find a control input τ such that the current velocity vector v to reach the velocity vector vc this is denoted as (7):
(7)
As is shown in Fig. 2, basically the FLC have 2 inputs variables corresponding the velocity errors obtained of (7) (denoted as ev and ew: linear and angular velocity errors respectively), and 2 outputs variables, the driving and rotational input torques τ (denoted by F and N respectively). The membership functions (MF)[9] are defined by 1 triangular and 2 trapezoidal functions for each variable involved due to the fact are easy to implement computationally.
Fig. 3 and Fig. 4 depicts the MFs in which N, C, P represent the fuzzy sets [9] (Negative, Zero and Positive respectively) associated to each input and output variable, where the universe of discourse is normalized into [-1,1] range.
Fig. 2. Tracking control structure
Fig. 3. Membership function of the input variables ev and ew
Fig. 4. Membership functions of the output variables F and N.
The rule set of FLC contain 9 rules which governing the input-output relationship of the FLC and this adopts the Mamdani-style inference engine [16], and we use the center of gravity method to realize defuzzification procedure. In Table I, we present the rule set whose format is established as follows:
Rule i: If ev is G1 and ew is G2 then F is G3 and N is G4
Where G1..G4 are the fuzzy set associated to each variable and i= 1 ... 9.
TABLE 1
FUZZY RULE SET
In Table I, N means NEGATIVE, P means POSITIVE and C means ZERO.
V. SIMULATION RESULTS
Simulations have been done in Matlab? to test the tracking controller of the mobile robot defined in (1). We consider the initial position q(0) = (0, 0, 0) and initial velocity v(0) = (0,0). From Fig. 5 to Fig. 8 we show the results of the simulation for the case 1. Position and orientation errors are depicted in the Fig. 5 and Fig. 6 respectively, as can be observed the errors are sufficient close to zero, the trajectory tracked (see Fig. 7) is very close to the desired, and the velocity errors shown in Fig. 8 decrease to zero, achieving the control objective in less than 1 second of the whole simulation. We show in Fig. 9 the Simulink block diagram to test the controller. We also show in Fig. 10 the tracking errors in the three variables. Finally, we show in Fig. 11 the evolution of the genetic algorithm that was used to find the optimal parameters for the fuzzy controller.
Fig. 5. Positions error with respect to the reference values. Solid: error in x, dotted: error in y.
Fig. 6. Orientation error with respect to the reference values.
Fig. 7. Mobile Robot Trajectory.
Fig. 8. Velocity errors: Solid: error in e, dotted: error in evw
Fig. 9 Simulink block diagram of the controller.
Fig. 10 Tracking errors in the three variables.
Fig. 11 Evolution of GA for finding optimal Controller
In Table II we show simulation results for 25 experiments with different conditions for the gains of the fuzzy controller. We can also appreciate from this table that different reference velocities and positions were considered.
TABLE II
SIMULATION RESULTS FOR DIFFERENT EXPERIMENTS WITH THE FUZZY CONTROLLER.
VI. CONCLUSIONS
We described the development of a tracking controller integrating a fuzzy logic controller for a unicycle mobile robot with known dynamics, which can be applied for both, point stabilization and trajectory tracking. Computer simulation results confirm that the controller can achieve our objective. As future work, several extensions can be made to the control structure of Fig. 2, such as to increase the tracking accuracy and the performance level.
REFERENCES
[1] S. Bentalba, A. El Hajjaji, A. Rachid, Fuzzy Control of a Mobile Robot: A New Approach, Proc. IEEE Int. Conf. On Control Applications, Hartford, CT, pp 69-72, October 1997.
[2] A. M. Bloch, S. Drakunov, Tracking in NonHolonomic Dynamic System Via Sliding Modes, Proc. IEEE Conf. On Decision & Control, Brighton, UK, pp 1127-1132, 1991.
[3] G. Campion, G. Bastin, B. D’Andrea-Novel, Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots, IEEE Trans. On Robotics and Automation, Vol. 12, No. 1, February 1996.
[4] D. Chwa., Sliding-Mode Tracking Control of Nonholonomic Wheeled Mobile Robots in Polar coordinates, IEEE Trans. On Control Syst. Tech. Vol. 12, No. 4, pp 633-644, July 2004.
[5] R. Fierro and F.L. Lewis, Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics. Proc. 34th Conf. on Decision & Control, New Orleans, LA, 1995.
[6] R. Fierro, F.L. Lewis, Control of a Nonholonomic Mobile Robot Using Neural Networks, IEEE Trans. On Neural Networks, Vol. 9, No. 4, pp 589 – 600, July 1998.
[7] T. Fukao, H. Nakagawa, N. Adachi, Adaptive Tracking Control of a NonHolonomic Mobile Robot, IEEE Trans. On Robotics and Automation, Vol. 16, No. 5, pp. 609-615, October 2000.
[8] S. Ishikawa, A Method of Indoor Mobile Robot Navigation by Fuzzy Control, Proc. Int. Conf. Intell. Robot. Syst., Osaka, Japan, pp 1013-1018, 1991.
[9] J. S. R. Jang, C.T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Upper Sadle River, NJ, 1997.
[10] Y. Kanayama, Y. Kimura, F. Miyazaki T. Noguchi, A Stable Tracking Control Method For a Non-Holonomic Mobile Robot, Proc. IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, Osaka, Japan, pp 1236- 1241, 1991.
[11] I. Kolmanovsky, N. H. McClamroch., Developments in Nonholonomic Nontrol Problems, IEEE Control Syst. Mag., Vol. 15, pp. 20–36, December. 1995.
[12] T-C Lee, C. H. Lee, C-C Teng, Tracking Control of Mobile Robots Using the Backsteeping Technique, Proc. 5th. Int. Conf. Contr., Automat., Robot. Vision, Singapore, pp 1715-1719, December 1998.
[13] T-C Lee, K. Tai, Tracking Control of Unicycle-Modeled Mobile robots Using a Saturation Feedback Controller, IEEE Trans. On Control Systems Technology, Vol. 9, No. 2, pp 305-318, March 2001.
[14] T. H. Lee, F. H. F. Leung, P. K. S. Tam, Position Control for Wheeled Mobile Robot Using a Fuzzy Controller, IEEE pp 525-528, 1999.
[15] W. Nelson, I. Cox, Local Path Control for an Autonomous Vehicle, Proc. IEEE Conf. On Robotics and Automation, pp. 1504-1510, 1988.
[16] K. M. Passino, S. Yurkovich, “Fuzzy Control”, Addison Wesley Longman, USA 1998.
[17] S. Pawlowski, P. Dutkiewicz, K. Kozlowski, W. Wroblewski, Fuzzy Logic Implementation in Mobile Robot Control, 2nd Workshop On Robot Motion and Control, pp 65-70, October 2001.
[18] C-C Tsai, H-H Lin, C-C Lin, Trajectory Tracking Control of a Laser-Guided Wheeled Mobile Robot, Proc. IEEE Int. Conf. On Control Applications, Taipei, Taiwan, pp 1055-1059, September 2004.
[19] K. T. Song, L. H. Sheen, Heuristic fuzzy-neural Network and its application to reactive navigation of a mobile robot, Fuzzy Sets Systems, Vol. 110, No. 3, pp 331-340, 2000.
[20] S. V. Ulyanov, S. Watanabe, V. S. Ulyanov, K. Yamafuji, L. V. Litvintseva, G. G. Rizzotto, Soft Computing for the Intelligent Robust Control of a Robotic Unicycle with a New Physical Measure for Mechanical Controllability, Soft Computing 2 pp 73 – 88, Springer- Verlag, 1998.
Oscar Castillo is a Professor of Computer Science in the Graduate Division, Tijuana Institute of Technology, Tijuana, Mexico. In addition, he is serving as Research Director of Computer Science and head of the research group on fuzzy logic and genetic algorithms. Currently, he is President of HAFSA (Hispanic American Fuzzy Systems Association) and Vice-President of IFSA (International Fuzzy Systems Association) in charge of publicity. Prof. Castillo is also Vice-Chair of the Mexican Chapter of the Computational Intelligence Society (IEEE). Prof. Castillo is also General Chair of the IFSA 2007 World Congress to be held in Cancun, Mexico. He also belongs to the Technical Committee on Fuzzy Systems of IEEE and to the Task Force on “Extensions to Type-1 Fuzzy Systems”. His research interests are in Type-2 Fuzzy Logic, Intuitionistic Fuzzy Logic, Fuzzy Control, Neuro-Fuzzy and Genetic-Fuzzy hybrid approaches. He has published over 50 journal papers, 5 authored books, 10 edited books, and 160 papers in conference proceedings.
Patricia Melin is a Professor of Computer Science in the Graduate Division, Tijuana Institute of Technology, Tijuana, Mexico. In addition, she is serving as Director of Graduate Studies in Computer Science and head of the research group on fuzzy logic and neural networks. Currently, she is Vice President of HAFSA (Hispanic American Fuzzy Systems Association) and Program Chair of International Conference FNG’05. Prof. Melin is also Chair of the Mexican Chapter of the Computational Intelligence Society (IEEE). She is also Program Chair of the IFSA 2007 World Congress to be held in Cancun, Mexico. She also belongs to the Committee of Women in Computational Intelligence of the IEEE and to the New York Academy of Sciences. Her research interests are in Type-2 Fuzzy Logic, Modular Neural Networks, Pattern Recognition, Fuzzy Control, Neuro-Fuzzy and Genetic-Fuzzy hybrid approaches. She has published over 50 journal papers, 5 authored books, 8 edited books, and 140 papers in conference proceedings.
Leslie Astudillo is a graduate student in Computer Science with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico. She has published 2 papers in Conference Proceedings.
Arnulfo Alanis is a Professor with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico. He has published 2 Journal papers and 15 Conference Proceedings papers.
Jose Soria is a Professor with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico. He has published 4 Journal papers and 5 Conference Proceedings papers.
Luis Aguilar is a Professor with the Center for Research in Digital Systems in Tijuana, Mexico. He has published 5 Journal papers and 15 Conference Proceedings papers. He is member of the National System of Researchers of Mexico, and member of IEEE. He is member of the IEEE Computational Intelligence-Chapter Mexico, and member of the Hispanic American Fuzzy Systems Association. He is also member of the International Program Committees of several Conferences, and reviewers of several International Journals.