《2018年高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.2.2 橢圓的幾何性質(zhì)課件16 蘇教版選修1 -1.ppt》由會員分享,可在線閱讀,更多相關(guān)《2018年高中數(shù)學(xué) 第二章 圓錐曲線與方程 2.2.2 橢圓的幾何性質(zhì)課件16 蘇教版選修1 -1.ppt(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、橢圓的幾何性質(zhì)(1),復(fù)習(xí):,1.橢圓的定義:,到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2 |)的動點的軌跡叫做橢圓。,2.橢圓的標(biāo)準(zhǔn)方程是:,,,,,3.橢圓中a,b,c的關(guān)系是:,a2=b2+c2,,當(dāng)焦點在X軸上時,當(dāng)焦點在Y軸上時,橢圓的對稱性,,,,,,2、對稱性:,,,,,從圖形上看,橢圓關(guān)于x軸、y軸、原點對稱。 從方程上看: (1)把x換成-x方程不變,圖象關(guān)于y軸對稱; (2)把y換成-y方程不變,圖象關(guān)于x軸對稱; (3)把x換成-x,同時把y換成-y方程不變,圖象關(guān)于原點成中心對稱。,3、橢圓的頂點,令 x=0,得 y=?,說明橢圓與 y軸的交點? 令 y=0,得
2、 x=?說明橢圓與 x軸的交點?,*頂點:橢圓與它的對稱軸的四個交點,叫做橢圓的頂點。 *長軸、短軸:線段A1A2、B1B2分別叫做橢圓的長軸和短軸。 a、b分別叫做橢圓的長半軸長和短半軸長。,,,根據(jù)前面所學(xué)有關(guān)知識畫出下列圖形,(1),(2),,,,,,,,,A1,B1,A2,B2,B2,A2,B1,A1,,,,,4、橢圓的離心率,離心率:橢圓的焦距與長軸長的比:,叫做橢圓的離心率。,(1)離心率的取值范圍:,(2)離心率對橢圓形狀的影響:,0
3、,(c,0)、(-c,0),長半軸長為a,短半軸長為b. a>b,a2=b2+c2,|x|≤ b,|y|≤ a,同前,(b,0)、(-b,0)、(0,a)、(0,-a),(0 , c)、(0, -c),同前,同前,同前,例1已知橢圓方程為16x2+25y2=400,,它的長軸長是: 。短軸長是: 。 焦距是: 。 離心率等于: 。 焦點坐標(biāo)是: 。頂點坐標(biāo)是: 。,10,8,6,,,,,解題的關(guān)鍵:1、將橢圓方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程 明確a、b,2、確定焦點的位置和長軸的位置,例3.已知橢圓的中心在原點,焦點在坐標(biāo)軸上,長軸是短軸的三倍,且橢圓經(jīng)過點P(3,0),求橢圓的方程。,答案:,分類討論的數(shù)學(xué)思想,小結(jié):,本節(jié)課我們學(xué)習(xí)了橢圓的幾個簡單幾何性質(zhì):范圍、對稱性、頂點坐標(biāo)、離心率等概念及其幾何意義。了解了研究橢圓的幾個基本量a,b,c,e及頂點、焦點、對稱中心及其相互之間的關(guān)系,這對我們解決橢圓中的相關(guān)問題有很大的幫助,給我們以后學(xué)習(xí)圓錐曲線其他的兩種曲線扎實了基礎(chǔ)。在解析幾何的學(xué)習(xí)中,我們更多的是從方程的形式這個角度來挖掘題目中的隱含條件,需要我們認識并熟練掌握數(shù)與形的聯(lián)系。在本節(jié)課中,我們運用了幾何性質(zhì),待定系數(shù)法來求解橢圓方程,在解題過程中,準(zhǔn)確體現(xiàn)了函數(shù)與方程以及分類討論的數(shù)學(xué)思想。,