《(全國通用版)2019版高考數(shù)學大一輪復習 第十一章 計數(shù)原理、概率、隨機變量及其分布 第5節(jié) 古典概型課件 理 新人教B版.ppt》由會員分享,可在線閱讀,更多相關《(全國通用版)2019版高考數(shù)學大一輪復習 第十一章 計數(shù)原理、概率、隨機變量及其分布 第5節(jié) 古典概型課件 理 新人教B版.ppt(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第5節(jié)古典概型,最新考綱1.理解古典概型及其概率計算公式;2.會計算一些隨機事件所包含的基本事件數(shù)及事件發(fā)生的概率.,1.基本事件的特點 (1)任何兩個基本事件是______的. (2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下兩個特征的概率模型稱為古典的概率模型,簡稱古典概型. (1)試驗的所有可能結果只有__________,每次試驗只出現(xiàn)其中的一個結果. (2)每一個試驗結果出現(xiàn)的可能性______.,知 識 梳 理,互斥,有限個,相同,常用結論與微點提醒 1.古典概型中的基本事件都是互斥的,確定基本事件的方法主要有列舉法、列表法與樹狀圖法. 2.概率的一
2、般加法公式P(AB)P(A)P(B)P(AB)中,易忽視只有當AB,即A,B互斥時,P(AB)P(A)P(B),此時P(AB)0.,1.思考辨析(在括號內(nèi)打“”或“”) (1)“在適宜條件下,種下一粒種子觀察它是否發(fā)芽”屬于古典概型,其基本事件是“發(fā)芽與不發(fā)芽”.() (2)擲一枚硬幣兩次,出現(xiàn)“兩個正面”“一正一反”“兩個反面”,這三個結果是等可能事件.() (3)從3,2,1,0,1,2中任取一數(shù),取到的數(shù)小于0與不小于0的可能性相同.() (4)利用古典概型的概率可求“在邊長為2的正方形內(nèi)任取一點,這點到正方形中心距離小于或等于1”的概率.(),診 斷 自 測,解析對于(1),發(fā)芽與不發(fā)
3、芽不一定是等可能,所以(1)不正確;對于(2),三個事件不是等可能,其中“一正一反”應包括正反與反正兩個基本事件,所以(2)不正確;對于(4),應利用幾何概型求概率,所以(4)不正確. 答案(1)(2)(3)(4),答案B,答案B,答案C,答案(1)C(2)B,規(guī)律方法1.計算古典概型事件的概率可分三步:(1)計算基本事件總個數(shù)n; (2)計算事件A所包含的基本事件的個數(shù)m;(3)代入公式求出概率P. 2.(1)用列舉法寫出所有基本事件時,可借助“樹狀圖”列舉,以便做到不重、不漏. (2)利用排列、組合計算基本事件時,一定要分清是否有序,并重視兩個計數(shù)原理的靈活應用.,答案(1)B(2)A,考
4、點二復雜的古典概型的概率(典例遷移) 【例2】 (經(jīng)典母題)某市A,B兩所中學的學生組隊參加辯論賽,A中學推薦了3名男生、2名女生,B中學推薦了3名男生、4名女生,兩校所推薦的學生一起參加集訓.由于集訓后隊員水平相當,從參加集訓的男生中隨機抽取3人、女生中隨機抽取3人組成代表隊. (1)求A中學至少有1名學生入選代表隊的概率; (2)某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽,求參賽女生人數(shù)不少于2人的概率.,【遷移探究1】 求A中學至多有1人入選代表隊的概率.,【遷移探究2】 求B中學入選代表隊的女生人數(shù)多于男生人數(shù)的概率.,規(guī)律方法1.求較復雜事件的概率問題,解題關鍵是理解題目的實際
5、含義,把實際問題轉(zhuǎn)化為概率模型,必要時將所求事件轉(zhuǎn)化成彼此互斥事件的和,或者先求其對立事件的概率,進而再用互斥事件的概率加法公式或?qū)α⑹录母怕使角蠼? 2.注意區(qū)別排列與組合,以及計數(shù)原理的正確使用.,考點三古典概型與統(tǒng)計知識的交匯問題 【例3】 (2018黃岡質(zhì)檢)已知某中學高三理科班學生的數(shù)學與物理的水平測試成績抽樣統(tǒng)計如下表:,若抽取學生n人,成績分為A(優(yōu)秀),B(良好),C(及格)三個等級,設x,y分別表示數(shù)學成績與物理成績,例如:表中物理成績?yōu)锳等級的共有14401064(人),數(shù)學成績?yōu)锽等級且物理成績?yōu)镃等級的共有8人.已知x與y均為A等級的概率是0.07. (1)設在該樣
6、本中,數(shù)學成績的優(yōu)秀率是30%,求a,b的值; (2)已知a7,b6,求數(shù)學成績?yōu)锳等級的人數(shù)比C等級的人數(shù)多的概率.,規(guī)律方法求解古典概型與統(tǒng)計交匯問題的思路 (1)依據(jù)題目的直接描述或頻率分布表、頻率分布直方圖、莖葉圖等統(tǒng)計圖表給出的信息,提煉需要的信息. (2)進行統(tǒng)計與古典概型概率的正確計算.,【訓練3】 從某地高中男生中隨機抽取100名同學,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖所示).由圖中數(shù)據(jù)可知體重的平均值為________kg;若要從體重在60,70),70,80),80,90三組內(nèi)的男生中,用分層抽樣的方法選取12人參加一項活動,再從這12個人中選兩人當正副隊長,則這兩人體重不在同一組內(nèi)的概率為________.,