《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第3講 圓錐曲線的綜合問題課件 文.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 解析幾何 第3講 圓錐曲線的綜合問題課件 文.ppt(59頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第3講圓錐曲線的綜合問題,專題五解析幾何,板塊三專題突破核心考點(diǎn),,考情考向分析,1.圓錐曲線的綜合問題一般以直線和圓錐曲線的位置關(guān)系為載體,以參數(shù)處理為核心,考查范圍、最值問題,定點(diǎn)、定值問題,探索性問題. 2.試題解答往往要綜合應(yīng)用函數(shù)與方程、數(shù)形結(jié)合、分類討論等多種思想方法,對(duì)計(jì)算能力也有較高要求,難度較大.,,,熱點(diǎn)分類突破,真題押題精練,內(nèi)容索引,熱點(diǎn)分類突破,,熱點(diǎn)一范圍、最值問題,圓錐曲線中的范圍、最值問題,可以轉(zhuǎn)化為函數(shù)的最值問題(以所求式子或參數(shù)為函數(shù)值),或者利用式子的幾何意義求解.,解答,(1)求點(diǎn)M的軌跡方程;,所以點(diǎn)M在C2N的垂直平分線上,所以|MN||MC2|,,
2、所以點(diǎn)M在以C1,C2為焦點(diǎn)的橢圓上,,(2)直線l與曲線交于A,B兩點(diǎn),AB的中點(diǎn)在直線y 上,求OAB(O為坐標(biāo)原點(diǎn))面積的取值范圍.,解答,解由題意知直線l的斜率存在, 設(shè)A(x1,y1),B(x2,y2),l:ykxm,,由0,得0
3、m,A(x1,y1),B(x2,y2).,得4x26mx3m230,36m216(3m23)12m2480, 即2
4、些代數(shù)表達(dá)式的值等與題目中的參數(shù)無關(guān),不依參數(shù)的變化而變化,而始終是一個(gè)確定的值.,解答,(1)求橢圓M的方程;,解答,(2)設(shè)直線l與橢圓E交于A,B兩點(diǎn),且與橢圓M僅有一個(gè)公共點(diǎn),試判斷ABO的面積是否為定值(O為坐標(biāo)原點(diǎn))?若是,求出該定值;若不是,請(qǐng)說明理由.,解當(dāng)直線l的斜率存在時(shí),設(shè)直線l:ykxb.,令64k2b24(34k2)(4b212)0,得 b234k2.,0顯然成立.,設(shè)A(x1,y1),B(x2,y2),,當(dāng)直線l的斜率不存在時(shí),l:x2或x2, 則|AB|6,原點(diǎn)O到直線l的距離d2, SABO6. 綜上所述,ABO的面積為定值6.,(1)動(dòng)直線過定點(diǎn)問題的兩大類型
5、及解法 動(dòng)直線l過定點(diǎn)問題,解法:設(shè)動(dòng)直線方程(斜率存在)為ykxt,由題設(shè)條件將t用k表示為tmk,得yk(xm),故動(dòng)直線過定點(diǎn)(m,0). 動(dòng)曲線C過定點(diǎn)問題,解法:引入?yún)⒆兞拷⑶€C的方程,再根據(jù)其對(duì)參變量恒成立,令其系數(shù)等于零,得出定點(diǎn).,,(2)求解定值問題的兩大途徑,先將式子用動(dòng)點(diǎn)坐標(biāo)或動(dòng)線中的參數(shù)表示,再利用其滿足的約束條件使其絕對(duì)值相等的正負(fù)項(xiàng)抵消或分子、分母約分得定值.,跟蹤演練2(2018凱里市第一中學(xué)模擬)已知拋物線C:y22px(p0)的焦點(diǎn)與曲線:12x24y23的一個(gè)焦點(diǎn)相同,O為坐標(biāo)原點(diǎn),點(diǎn)M為拋物線C上任意一點(diǎn),過點(diǎn)M作x軸的平行線交拋物線的準(zhǔn)線于點(diǎn)P,直線
6、OP交拋物線于點(diǎn)N. (1)求拋物線C的方程;,解答,解由曲線:12x24y23,,的焦點(diǎn)坐標(biāo)分別為F1(1,0),F(xiàn)2(1,0),,(2)求證:直線MN過定點(diǎn)G,并求出此定點(diǎn)的坐標(biāo).,解答,解由(1)知,拋物線y24x的準(zhǔn)線方程為x1,,此時(shí)直線恒過定點(diǎn)G(1,0), 因?yàn)?1,0)也在直線MN的方程x1上, 故直線MN恒過定點(diǎn)G(1,0).,,1.解析幾何中的探索性問題,從類型上看,主要是存在類型的相關(guān)題型,解決這類問題通常采用“肯定順推法”,將不確定性問題明確化.其步驟為:假設(shè)滿足條件的元素(點(diǎn)、直線、曲線或參數(shù))存在,用待定系數(shù)法設(shè)出,列出關(guān)于待定系數(shù)的方程組,若方程組有實(shí)數(shù)解,則元素
7、(點(diǎn)、直線、曲線或參數(shù))存在;否則,元素(點(diǎn)、直線、曲線或參數(shù))不存在. 2.反證法與驗(yàn)證法也是求解存在性問題常用的方法.,熱點(diǎn)三探索性問題,解答,所以圓C的標(biāo)準(zhǔn)方程為x2y24.,解答,(2)過橢圓右焦點(diǎn)的動(dòng)直線l2(其斜率不為0)交圓C于A,B兩點(diǎn),試探究在x軸正半軸上是否存在定點(diǎn)E,使得直線AE與BE的斜率之和為0?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.,解假設(shè)存在符合條件的點(diǎn)E.,當(dāng)直線l2的斜率存在時(shí), 設(shè)直線l2的方程為yk(x1).,得 x22k2xk240,0顯然成立.,由kAEkBE0,得kAEkBE,,即2x1x2(t1)(x1x2)2t0,,即E(4,0).,
8、當(dāng)直線l2的斜率不存在時(shí),直線l2的方程為x1,,由E(4,0)知滿足kAEkBE0. 所以當(dāng)點(diǎn)E的坐標(biāo)為(4,0)時(shí),kAEkBE0.,解決探索性問題的注意事項(xiàng) 存在性問題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在. (1)當(dāng)條件和結(jié)論不唯一時(shí),要分類討論. (2)當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件. (3)當(dāng)條件和結(jié)論都不知,按常規(guī)方法解題很難時(shí),要思維開放,采取另外的途徑.,,跟蹤演練3(2018山東、湖北部分重點(diǎn)中學(xué)模擬)已知長軸長為4的橢 圓 (ab0)過點(diǎn)P ,點(diǎn)F是橢圓的右焦點(diǎn). (1)求橢圓方程;,解答,解 2a4
9、, a2,,(2)在x軸上是否存在定點(diǎn)D,使得過D的直線l交橢圓于A,B兩點(diǎn).設(shè)點(diǎn)E為點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn),且A,F(xiàn),E三點(diǎn)共線?若存在,求D點(diǎn)坐標(biāo);若不存在,說明理由.,解答,解存在定點(diǎn)D滿足條件. 設(shè)D(t,0),直線l方程為xmyt(m0),,消去x,得(3m24)y26mty3t2120, 設(shè)A(x1,y1),B(x2,y2),則E(x2,y2),,由A,F(xiàn),E三點(diǎn)共線,可得(x21)y1(x11)y20, 即2my1y2(t1)(y1y2)0,,解得t4, 此時(shí)由0得m24. 存在定點(diǎn)D(4,0)滿足條件,且m滿足m24.,真題押題精練,1.(2017全國改編)已知F為拋物線C:y2
10、4x的焦點(diǎn),過F作兩條互相垂直的直線l1,l2,直線l1與C交于A,B兩點(diǎn),直線l2與C交于D,E兩點(diǎn),則|AB||DE|的最小值為________.,真題體驗(yàn),解析,16,答案,解析因?yàn)镕為y24x的焦點(diǎn), 所以F(1,0). 由題意知,直線l1,l2的斜率均存在且不為0,設(shè)l1的斜率為k,,設(shè)A(x1,y1),B(x2,y2),,同理可得|DE|4(1k2).,即k1時(shí),取得等號(hào).,解答,解答,解設(shè)A(x1,y1),B(x2,y2),,由題意知,0,,押題預(yù)測,押題依據(jù)本題將橢圓和拋物線聯(lián)合起來設(shè)置命題,體現(xiàn)了對(duì)直線和圓錐曲線位置關(guān)系的綜合考查.關(guān)注知識(shí)交匯,突出綜合應(yīng)用是高考的特色.,解答,押題依據(jù),已知橢圓C1: (a0)與拋物線C2:y22ax相交于A,B兩點(diǎn),且兩曲線的焦點(diǎn)F重合. (1)求C1,C2的方程;,解因?yàn)镃1,C2的焦點(diǎn)重合,,所以a24. 又a0,所以a2.,拋物線C2的方程為y24x.,(2)若過焦點(diǎn)F的直線l與橢圓分別交于M,Q兩點(diǎn),與拋物線分別交于P,N兩點(diǎn),是否存在斜率為k(k0)的直線l,使得 2?若存在,求出k的值;若不存在,請(qǐng)說明理由.,解答,當(dāng)lx軸時(shí),|MQ|3,|PN|4,不符合題意, 直線l的斜率存在, 可設(shè)直線l的方程為yk(x1)(k0),P(x1,y1),Q(x2,y2),M(x3,y3),N(x4,y4).,