2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十五) 第四章 第二節(jié) 文

上傳人:zhan****gclb 文檔編號:144407693 上傳時(shí)間:2022-08-27 格式:DOC 頁數(shù):7 大?。?.32MB
收藏 版權(quán)申訴 舉報(bào) 下載
2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十五) 第四章 第二節(jié) 文_第1頁
第1頁 / 共7頁
2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十五) 第四章 第二節(jié) 文_第2頁
第2頁 / 共7頁
2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十五) 第四章 第二節(jié) 文_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十五) 第四章 第二節(jié) 文》由會員分享,可在線閱讀,更多相關(guān)《2014屆高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升作業(yè)(二十五) 第四章 第二節(jié) 文(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 課時(shí)提升作業(yè)(二十五) 一、選擇題 1.(2013·寶雞模擬)已知a=(1,1),b=(1,-1),c=(-1,2),則c等于 (  ) (A)-a+b       (B)a-b (C)-a-b (D)-a+b 2.(2013·蚌埠模擬)已知向量a=(1-sinθ,1),b=(,1+sinθ),若a∥b,則銳角θ等于 (  ) (A)30°   (B)45°   (C)60°   (D)75° 3.(2013·九江模擬)在□ABCD中,=(3,7),=(-2,3),對稱中心為O,則等于  (  ) (A)(-,5)    

2、 (B)(-,-5) (C)(,-5) (D)(,5) 4.若α,β是一組基底,向量γ=xα+yβ(x,y∈R),則稱(x,y)為向量γ在基底α,β下的坐標(biāo),現(xiàn)已知向量a在基底p=(1,-1),q=(2,1)下的坐標(biāo)為(-2,2),則a在另一組基底m=(-1,1),n=(1,2)下的坐標(biāo)為 (  ) (A)(2,0) (B)(0,-2) (C)(-2,0) (D)(0,2) 5.如圖所示,已知=2,=a,=b,=c,則下列等式中成立的是 (  ) (A)c=b-a (B)c

3、=2b-a (C)c=2a-b (D)c=a-b 6.(2013·銅川模擬)已知A(2,-2),B(4,3),向量p的坐標(biāo)為(2k-1,7)且p∥,則k的值為 (  ) (A)- (B) (C)- (D) 7.已知非零向量e1,e2,a,b滿足a=2e1-e2,b=ke1+e2.給出以下結(jié)論: ①若e1與e2不共線,a與b共線,則k=-2; ②若e1與e2不共線,a與b共線,則k=2; ③存在實(shí)數(shù)k,使得a與b不共線,e1與e2共線; ④不存在實(shí)數(shù)k,使得a與b不共線

4、,e1與e2共線. 其中正確結(jié)論的個(gè)數(shù)是 (  ) (A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè) 8.(能力挑戰(zhàn)題)平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)A(3,1),B(-1,3),若點(diǎn)C滿足=α+β,其中α,β∈R且α+β=1,則點(diǎn)C的軌跡方程為 (  ) (A)(x-1)2+(y-2)2=5 (B)3x+2y-11=0 (C)2x-y=0 (D)x+2y-5=0 9.(2013·黃石模擬)如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動(dòng)點(diǎn)P在△BC

5、D內(nèi)運(yùn)動(dòng)(含邊界),設(shè)=α+β,則α+β的最大值是 (  ) (A)    (B)    (C)    (D) 10.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,則tan(α-)等于 (  ) (A)3 (B)-3 (C) (D)- 二、填空題 11.在平面直角坐標(biāo)系xOy中,四邊形ABCD的邊AB∥DC,AD∥BC.已知A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為    . 12.如圖,在□ABCD中,=a,=b,=3,M是BC的

6、中點(diǎn),則=    (用a,b表示). 13.在平面直角坐標(biāo)系xOy中,已知向量a=(1,2),a-b=(3,1),c=(x,3),若(2a+b)∥c,則x=    . 14.(2013·合肥模擬)給出以下四個(gè)命題: ①四邊形ABCD是菱形的充要條件是=,且||=||; ②點(diǎn)G是△ABC的重心,則++=0; ③若=3e1,=-5e1,且||=||,則四邊形ABCD是等腰梯形; ④若||=8,||=5,則3≤||≤13. 其中所有正確命題的序號為    . 三、解答題 15.平面內(nèi)給定三個(gè)向量a=(3,2),b=(-1,2),c=(4,1),回答下列問題: (1)求3a+b-2

7、c. (2)求滿足a=mb+nc的實(shí)數(shù)m,n. (3)若(a+kc)∥(2b-a),求實(shí)數(shù)k. 答案解析 1.【解析】選B.設(shè)c=λa+μb, ∴(-1,2)=λ(1,1)+μ(1,-1), ∴∴ ∴c=a-b. 2.【解析】選B.∵a∥b,∴(1-sinθ)(1+sinθ)-1×=0, ∴sinθ=±, 又θ為銳角,∴θ=45°. 3.【解析】選B.=-=-(+)=-(1,10)=(-,-5). 4.【解析】選D.由已知a=-2p+2q=(-2,2)+(4,2)=(2,4), 設(shè)a=λm+μn=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),

8、 則由解得 ∴a=0m+2n, ∴a在基底m,n下的坐標(biāo)為(0,2). 5.【解析】選A.由=2得+=2(+),所以2=-+3,即c=b-a. 6.【解析】選D.=(2,5),由p∥得5(2k-1)-2×7=0,所以k=. 7.【解析】選B.(1)若a與b共線,即a=λb,即2e1-e2=λke1+λe2,而e1與e2不共線, ∴解得k=-2.故①正確,②不正確. (2)若e1與e2共線,則e2=λe1,有 ∵e1,e2,a,b為非零向量,∴λ≠2且λ≠-k, ∴a=b,即a=b,這時(shí)a與b共線, ∴不存在實(shí)數(shù)k滿足題意.故③不正確,④正確. 綜上,正確的結(jié)論為①④.

9、8.【思路點(diǎn)撥】求軌跡方程的問題時(shí)可求哪個(gè)點(diǎn)的軌跡設(shè)哪個(gè)點(diǎn)的坐標(biāo),故設(shè)C(x,y),根據(jù)向量的運(yùn)算法則及向量相等的關(guān)系,列出關(guān)于α,β,x,y的關(guān)系式,消去α,β即可得解. 【解析】選D.設(shè)C(x,y),則=(x,y),=(3,1),=(-1,3).由=α+β,得(x,y)=(3α,α)+(-β,3β)=(3α-β,α+3β). 于是 由③得β=1-α代入①②,消去β得 再消去α得x+2y=5, 即x+2y-5=0. 【一題多解】由平面向量共線定理,得當(dāng)=α+β,α+β=1時(shí),A,B,C三點(diǎn)共線. 因此,點(diǎn)C的軌跡為直線AB, 由兩點(diǎn)式求直線方程得=, 即x+2y-5=0.

10、 9.【思路點(diǎn)撥】建立平面直角坐標(biāo)系,設(shè)P(x,y),求出α+β與x,y的關(guān)系,運(yùn)用線性規(guī)劃求解. 【解析】選B.以A為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系,則D(0,1),B(3,0),C(1,1),設(shè)P(x,y). ∴=(x,y),=(0,1),=(3,0). ∵=α+β, 即(x,y)=α(0,1)+β(3,0)=(3β,α), ∴∴ ∴α+β=+y. 由線性規(guī)劃知識知在點(diǎn)C(1,1)處+y取得最大值. 10.【思路點(diǎn)撥】根據(jù)向量的共線求出tanα,再利用三角變換公式求值. 【解析】選B.∵a=(cosα,-2),b=(sinα,1)且a∥b, ∴=(經(jīng)分析知

11、cosα≠0),∴tanα=-. ∴tan(α-)===-3,故選B. 【方法技巧】解決向量與三角函數(shù)綜合題的技巧方法 向量與三角函數(shù)的結(jié)合是近幾年高考中出現(xiàn)較多的題目,解答此類題目的關(guān)鍵是根據(jù)條件將所給的向量問題轉(zhuǎn)化為三角問題,然后借助三角恒等變換再根據(jù)三角求值、三角函數(shù)的性質(zhì)、解三角形的問題來解決. 11.【解析】設(shè)D點(diǎn)的坐標(biāo)為(x,y),由題意知=, 即(2,-2)=(x+2,y),所以x=0,y=-2, ∴D(0,-2). 答案:(0,-2) 12.【解析】由題意知=+ =+=- =-(+) =--=-+ =-a+b. 答案:-a+b 13.【解析】由a=(

12、1,2),a-b=(3,1)得b=(-4,2),故2a+b=2(1,2)+(-4,2)=(-2,6). 由(2a+b)∥c得6x=-6,解得x=-1. 答案:-1 14.【解析】對于①,當(dāng)=時(shí),則四邊形ABCD為平行四邊形,又||=||,故該平行四邊形為菱形,反之,當(dāng)四邊形ABCD為菱形時(shí),則=,且||=||,故①正確;對于②,若G為△ABC的重心,則++=0,故不正確;對于③,由條件知=-,所以∥且||>||, 又||=||,故四邊形ABCD為等腰梯形,正確;對于④,當(dāng),共線同向時(shí),||=3,當(dāng),共線反向時(shí),||=8+5=13,當(dāng),不共線時(shí)3<||<13,故正確.綜上正確命題為①③④

13、. 答案:①③④ 15.【解析】(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6). (2)∵a=mb+nc, ∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n). ∴解得 (3)∵(a+kc)∥(2b-a), 又a+kc=(3+4k,2+k),2b-a=(-5,2). ∴2×(3+4k)-(-5)×(2+k)=0, ∴k=-. 【變式備選】已知四點(diǎn)A(x,0),B(2x,1),C(2,x),D(6,2x). (1)求實(shí)數(shù)x,使兩向量,共線. (2)當(dāng)兩向量與共線時(shí),A,B,C,D四點(diǎn)是否在同一條直線上? 【解析】(1)=(x,1),=(4,x). ∵∥, ∴x2-4=0,即x=±2. ∴當(dāng)x=±2時(shí),∥. (2)當(dāng)x=-2時(shí),=(6,-3),=(-2,1), ∴∥.此時(shí)A,B,C三點(diǎn)共線, 從而,當(dāng)x=-2時(shí),A,B,C,D四點(diǎn)在同一條直線上. 但x=2時(shí),A,B,C,D四點(diǎn)不共線. - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!