喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改 【QQ:414951605 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改 【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改 【QQ:1304139763 可咨詢交流】=====================
大連交通大學(xué)2017屆本科畢業(yè)設(shè)計(jì)(論文)外文翻譯
中文翻譯
魯棒迭代學(xué)習(xí)控制及其在注塑成型工藝中的應(yīng)用
摘要
融合是迭代學(xué)習(xí)控制(ILC)在批處理過程中的設(shè)計(jì)和應(yīng)用中的一個(gè)重要問題。 本文提出了一種穩(wěn)健的迭代學(xué)習(xí)控制器的設(shè)計(jì)。以確保BIBO(有界輸入 - 有界輸出)穩(wěn)定被導(dǎo)出為最優(yōu)ILC,當(dāng)跟蹤任意有界輸出參考時(shí)。一個(gè)實(shí)際的方案,加權(quán)矩陣的選擇過程也提出了不確定的初始復(fù)位和干擾,確保系統(tǒng)批次的性能改進(jìn)。最后,應(yīng)用注塑控制演示e5ectiveness算法。2001 Elsevier Science Ltd.保留所有權(quán)利。
關(guān)鍵詞:迭代學(xué)習(xí)控制; 批量處理; 注塑成型
1.簡(jiǎn)介
迭代學(xué)習(xí)控制(ILC)的動(dòng)機(jī)是模仿人類學(xué)習(xí)過程。它最初的開發(fā)是為了操縱需要以高精度重復(fù)給定的任務(wù)的工業(yè)機(jī)器人。通過使用過程的重復(fù)性,即試驗(yàn)(或批)指標(biāo)k從試驗(yàn)到試驗(yàn),以及經(jīng)過的時(shí)間指數(shù)在一步一步的審判中,ILC逐漸和兩次迭代地提高了控制精度控制輸入的尺寸。這二維學(xué)習(xí)結(jié)果優(yōu)于常規(guī)飼料 - 背部控制技術(shù),只有時(shí)間尺寸沿著時(shí)間軸進(jìn)行輸入動(dòng)作。 學(xué)習(xí)控制設(shè)計(jì)的關(guān)鍵是提供一種算法,以確保為下一次試驗(yàn)生成控制輸入,使得性能隨著每次連續(xù)試驗(yàn)而提高。Uchiyama(1978)引入了迭代學(xué)習(xí)的產(chǎn)生方法,后來由Arimoto,Kawamura和Miyazaki(1984)進(jìn)行了數(shù)學(xué)計(jì)算。此后,對(duì)迭代學(xué)習(xí)控制的發(fā)展和分析已經(jīng)有了大量的研究。 最近,ILC被應(yīng)用于許多重復(fù)工藝,如間歇式反應(yīng)器,分批蒸餾和注射成型(Lee,Bang,Yi,Son,&Yoon,1996; Havlicsek&Alleyne,1999)。Bien和Xu(1998)的參考文獻(xiàn)可以找到關(guān)于這個(gè)問題的綜合文獻(xiàn)調(diào)查。
傳統(tǒng)的ILC方案用作開環(huán)前饋補(bǔ)償器。然而,已經(jīng)發(fā)現(xiàn),不用于循環(huán)反饋的ILC通常對(duì)擾動(dòng)敏感,系統(tǒng)收斂趨于緩慢(Bien&Xu,1998)。最近,Amann,Owens和Rogers(1996)通過將Riccati反饋與基于優(yōu)化原理的典型ILC前饋相結(jié)合,提出了一種新的ILC算法。該方案具有步進(jìn)自動(dòng)確定的優(yōu)點(diǎn),因此保證了指數(shù)收斂。模擬顯示,Amann的最優(yōu)學(xué)習(xí)算法非常有效,與傳統(tǒng)的ILC方案進(jìn)行比較; 這提高了對(duì)工業(yè)設(shè)置的更廣泛應(yīng)用的期望。在現(xiàn)實(shí)中,流程干擾中總是存在不確定性,而且,初始化過程很可能不是完全可重復(fù)的。這些實(shí)際問題對(duì)許多批次工藝是重要的,例如注射成型。 這些問題在阿曼的原始文章中沒有得到解決。
本文旨在擴(kuò)展Amann,Owens和Rogers(1996)的最優(yōu)迭代學(xué)習(xí)控制算法,以應(yīng)用于具有不確定初始復(fù)位的不穩(wěn)定干擾的通用批處理。Su。確保ILC具有有界輸入有界輸出(BIBO)穩(wěn)定性的必要條件。對(duì)成本函數(shù)的加權(quán)矩陣的選擇進(jìn)行分析。最后,給出了使用引入的最優(yōu)迭代學(xué)習(xí)控制來控制注塑速度的模擬和實(shí)驗(yàn)應(yīng)用,以證明所提出的算法的效果。
2. 最佳學(xué)習(xí)控制背景
Amann最優(yōu)學(xué)習(xí)算法的背景介紹如下。
2.1 問題制定
假設(shè)感興趣的植物由具有干擾的以下采樣時(shí)間線性系統(tǒng)描述
其中下標(biāo)k表示對(duì)應(yīng)于試驗(yàn)索引的操作的迭代次數(shù),例如,yt(t)是在時(shí)間t的系統(tǒng)輸出的值; ; 在第k個(gè)操作。k(t)和k(t)表示有界狀態(tài)和外部干擾。 注意,方程式的精確狀態(tài)初始化。(1)對(duì)于每次迭代都不是必需的。本文將討論初態(tài)變化和外部干擾的魯棒性。狀態(tài)空間矩陣A,B,為了簡(jiǎn)單起見,假設(shè)C是不隨時(shí)間而變的。沒有任何技術(shù)學(xué)科,有可能將本文的所有結(jié)果擴(kuò)展到時(shí)變系統(tǒng)?;诰€性系統(tǒng)理論 (1)可以推斷:
從上述可以看出,每次試驗(yàn)的初始動(dòng)作和干擾出現(xiàn)在植物中,將Amann,Owens和Rogers(1996)的工作擴(kuò)大到更普遍的情況。在每次試驗(yàn)中,涉及9個(gè)時(shí)間間隔。 (2)可以以矢量形式通過建立超向量YK作出; uk和k從yk(t); uk(t)和k(t)如下:
其中
超向量都帶有參數(shù)時(shí)間t的遺漏。在實(shí)施迭代學(xué)習(xí)控制期間,以前的試驗(yàn)的yk和uk需要記住當(dāng)前試驗(yàn)的uk + 1(t)的計(jì)算。矩陣G,已知為托普利茲矩陣一個(gè)三角形下部塊矩陣,可以從第9列來確定。在本文中,由阿曼,歐文斯和羅杰斯(1996)認(rèn)定為“規(guī)律性條件”
假設(shè)ker GT = 0。如果植物,方程 (1)具有相對(duì)度1,即CB0,那么G在SISO情況下是可逆的。否則,如果CB = 0,則可以按照Amann,Owen和Rogers(1996)和Silverman(1969)的作品中的詳細(xì)描述進(jìn)行正規(guī)化程序。這種規(guī)律性條件確保GTG(或GGT)具有至少一個(gè)正特征值?;谶@個(gè)假設(shè),與Amann,Owen和Rogers(1996)的收斂證明將在第3節(jié)中給出。
定義2.1 (Amann,Owen,&Rogers,1996)。迭代學(xué)習(xí)控制算法是因果關(guān)系,在第(k + 1)次試驗(yàn)/實(shí)驗(yàn)時(shí)刻t對(duì)系統(tǒng)的控制輸入的值僅從在時(shí)間間隔[0;(k + 1)次試驗(yàn)中可獲得的數(shù)據(jù)計(jì)算) t]和以前的試驗(yàn)。
2.2。 優(yōu)化迭代學(xué)習(xí)控制器
考慮以下由系數(shù)矩陣A組成的標(biāo)稱系統(tǒng); B和C等式 (1):
其中帶有上標(biāo)“”的變量表示標(biāo)稱系統(tǒng)輸出,它們由零初始化。它們?cè)跊]有任何干擾和初始誤差的情況下代表方程(1)的系統(tǒng)輸出。對(duì)于第(k + 1)個(gè)試驗(yàn)中給出的的參考軌跡(或期望的系統(tǒng)輸出)r(t),通過最小化相對(duì)于uk +1(t)的以下二次性能指標(biāo)來獲得標(biāo)稱最佳迭代學(xué)習(xí)控制律:
其中Puk + 1(t)= uk + 1(t)-uk(t),加權(quán)矩陣Q(t)和R(t)對(duì)于所有t是任意對(duì)稱正定。索引函數(shù) (6)可以以矩陣形式被重寫
其中 Q=diag{Q(1), Q(2), …,Q(N)}; R=diag{R(0);
R(1), … , R(N ? 1)},
通過將公式(7)的偏導(dǎo)數(shù)相對(duì)于uk + 1,得到標(biāo)稱最優(yōu)控制輸入
然而,可以觀察到,對(duì) k + 1(t)的計(jì)算,等式(9)的算法不是偶然的,因?yàn)橥ㄟ^該控制定律,k + 1(t)將取決于 k + 1(t’)。在Amann,Owens和Rogers(1996)之后,下面可以給出等價(jià)形式的(9)
其中k(t + 1)= r(t + 1)-k(t + 1)。 因此,得出新的公式
這表明,如果標(biāo)稱狀態(tài)XK和調(diào)整輸出y K含量由標(biāo)稱系統(tǒng)引入的因果標(biāo)稱控制輸入可以被迭代地獲得,式(5)。這種迭代學(xué)習(xí)控制算法在應(yīng)用于等式(4)的情況下也是最佳的,其中 = 0,即無(wú)干擾情況。本文旨在開發(fā)一種存在不確定的初始和干擾的ILC算法。這可以通過用公式(10) - (12)中的標(biāo)稱和與系統(tǒng)的xk和yk的等式(1)的測(cè)量,計(jì)算uk來實(shí)現(xiàn)。因此,因果迭代學(xué)習(xí)控制算法可以歸納為
其中S(t)由式(10)獲得??梢钥闯?,由方程(10)和(13) - (15)組成的控制算法是因果關(guān)系。在公式(15),uk+ 1(t)由通過將當(dāng)前試驗(yàn)的反饋?zhàn)饔酶纳谱詈笤囼?yàn)輸入U(xiǎn)K(T)而獲得(等式(15)的右側(cè)的第二項(xiàng)))和前饋動(dòng)作(等式(15)的第3項(xiàng)),其代表先前試驗(yàn)的信息。
在 Amann, Owen,和Rogers(1996)的工作中,還缺乏關(guān)于加權(quán)矩陣Q和R為系統(tǒng)收斂的選擇的準(zhǔn)則。這種實(shí)際考慮在ILC到批量處理的設(shè)計(jì)和應(yīng)用中是重要的。上述方法的收斂和魯棒性分析在初始化和擾動(dòng)的不確定性的基礎(chǔ)上進(jìn)行,并以噴射速度控制為基礎(chǔ)。
3穩(wěn)定和收斂分析
對(duì)于所提出的算法,將研究如下所示的魯棒有界輸入邊界輸出穩(wěn)定性。
定義3.1。據(jù)稱,迭代學(xué)習(xí)控制系統(tǒng)是魯棒的BIBO(有界輸入有界輸出),迭代學(xué)習(xí)控制系統(tǒng)被稱為魯棒BIBO(有界輸入有界輸出)
上述設(shè)計(jì)考慮了系統(tǒng)的擾動(dòng)和沿試驗(yàn)軸的初始化不確定性。討論了穩(wěn)健的BIBO穩(wěn)定性以及迭代學(xué)習(xí)控制算法的收斂性和魯棒性。
定理3.1(穩(wěn)健BIBO穩(wěn)定性)。方程(10)和(13) - (15)到植物(1)的迭代學(xué)習(xí)控制算法的應(yīng)用是穩(wěn)健的BIBO穩(wěn)定,如果, 只有當(dāng) I + GR-1GTQ和I + R-1GTQG具有其單元外盤全部特征值, 那么
證明。 將等式(13)乘以G并根據(jù)方程(4)和ek = r-yk得到
其中。 然后沿著試驗(yàn)指數(shù)k的ek的迭代關(guān)系如下
再次將ek + 1 = r-yk + 1替換為式(13)并使用式(4),則可以得出
結(jié)果如下:應(yīng)用標(biāo)準(zhǔn)離散時(shí)間系統(tǒng)理論。
定理3.2(收斂)。將等式(10)和(13) - (15)的迭代學(xué)習(xí)控制算法應(yīng)用于方程(1),其中選擇R和Q以滿足方程(16)和(17)。如果所有試驗(yàn)都是重復(fù)的,因?yàn)樗械膞k(0),外部干擾k(t)和k(t)與試驗(yàn)指數(shù)k相同; 那么以下收斂結(jié)果將成立:
其中*是一些常數(shù)向量。
證明。如果所有試驗(yàn)都重復(fù),則從公式(3)可以看出,對(duì)于所有試驗(yàn)指數(shù)k,存在一個(gè)常數(shù)向量*,使得k =*。
迭代地使用方程(20)和(19),得到
分別。 因此,在定理3.1的穩(wěn)健BIBO穩(wěn)定條件下,得到
這完成公式(21)。
由于,由公式(24),容易得出式(22)的極限。
4. 加權(quán)矩陣的選擇
上述穩(wěn)定性推導(dǎo)是基于初始誤差和擾動(dòng)有界的假設(shè)。為了實(shí)現(xiàn)合理的瞬態(tài)性能,必須仔細(xì)選擇加權(quán)矩陣Q和R。令R =I,Q = I其中? 并且是正設(shè)計(jì)常數(shù),并且讓。注意,最優(yōu)ILC的性能受到Q和R的比值而不是其實(shí)值的影響,如方程(16)和(17)所示。
一個(gè)必要的條件,必須滿足由和是保證魯棒有界輸入有界輸出穩(wěn)定性。如果和均為正,則公式(16)和(17)是直接的,而GTG或GGT具有至少一個(gè)正特征值。以下是確定常數(shù)和,使得所得到的控制系統(tǒng)不僅可以拒絕不確定的干擾,而且可以快速收斂來跟蹤期望的參考。它來源于方程(13) - (15)
因此,對(duì)于固定GGT,值(相當(dāng)于大)的大值有助于減少第一次試驗(yàn)e0的誤差,即可以通過試驗(yàn)實(shí)現(xiàn)快速收斂。然而,從式(14)和(15)可以得到
可以看出,大的(或大)導(dǎo)致在uk + 1(t)到k + 1(t)之間的更強(qiáng)的前饋動(dòng)作,使得控制系統(tǒng)對(duì)輸出參考的變化較不敏感。強(qiáng)勁的前饋行動(dòng)往往會(huì)因不確定性和外部干擾而導(dǎo)致隨機(jī)誤差的積累,從而導(dǎo)致控制投入的強(qiáng)勁增長(zhǎng)。另一方面,從等式(3),(19)和(20)可以看出,當(dāng)A在單位盤外部具有特征值時(shí),初始化不確定性和外部干擾可能導(dǎo)致慢收斂或甚至振蕩控制。因此,建議采用不同的加權(quán)方案來考慮這些實(shí)際考慮因素。 令k = k/k是當(dāng)k→∞時(shí)隨著周期數(shù)k的增加而接近零的序列,即k →0(或k→0)。 那么方程式 (10)和(28)成為
當(dāng)k→∞時(shí),Sk(t)→0和(t)→0很明顯,這表明通過定理3.1和式(15)可以確保uk(t)和ek(t)的快速收斂。在以下部分中,通過實(shí)驗(yàn)驗(yàn)證了選擇加權(quán)矩陣Q和R的建議方案。
5. 注射速度控制的仿真與實(shí)驗(yàn)應(yīng)用
5.1 注塑工藝
注塑成型是重要的聚合物加工技術(shù)。它將聚合物顆粒轉(zhuǎn)變成各種形狀和類型的產(chǎn)品,從簡(jiǎn)單的杯子到精密鏡頭和光盤。作為循環(huán)過程,注射成型包括三個(gè)階段:填充(注射),包裝保持和冷卻。在填充過程中,注射螺桿向前移動(dòng)并將聚合物熔體推入模腔。一旦模具完全被覆蓋,該過程就切換到填料保持階段,在此期間,在一定壓力下將額外的聚合物加入到模具中以補(bǔ)償與材料冷卻和固化相關(guān)的收縮。 包裝保持階段繼續(xù),直到模具腔的狹窄入口的門凍結(jié),將模具中的材料與注射單元中的材料隔離。 在冷卻階段,模具內(nèi)部的聚合物繼續(xù)冷卻,同時(shí)通過螺旋旋轉(zhuǎn)將材料熔化并輸送到桶的前部。 然后重復(fù)該過程。 如圖。 圖1顯示了具有儀器的典型往復(fù)式螺桿注射成型機(jī)的簡(jiǎn)化圖。
許多研究人員已經(jīng)表明,對(duì)每個(gè)階段的一些關(guān)鍵變量的精確控制對(duì)于模制件的質(zhì)量是至關(guān)重要的。 注射速度是注射階段的關(guān)鍵變量。 注射速度的動(dòng)力學(xué)被發(fā)現(xiàn)是非線性和時(shí)變的,它受到材料性能,注射模具和操作條件的變化等許多因素的影響(Tsoi&Gao,1999; Yang&Gao,2000 )。
Havlicsek和Alleyne通過建立一個(gè)僅限于機(jī)械液壓系統(tǒng)的數(shù)學(xué)模型,忽略了材料,模具和其他操作條件的不合格,應(yīng)用了ILC來控制電液注塑機(jī)的柱塞位置和腔壓力。 。 注射速度既不測(cè)量也不直接控制在其工作中。 噴射速度動(dòng)力學(xué)的數(shù)學(xué)模型是相當(dāng)復(fù)雜的,因?yàn)樗粌H受到機(jī)械液壓系統(tǒng)的影響,還包括所使用的材料和模具幾何特性。 重要的是要注意,材料和模具的選擇取決于待模制的產(chǎn)品,注塑成型中使用的聚合物表現(xiàn)出強(qiáng)烈的非線性Qow和熱行為。在本文中,基于方程(13) - (15)的學(xué)習(xí)控制器被設(shè)計(jì)和實(shí)現(xiàn)以直接控制噴射速度。 首先進(jìn)行了仿真,研究了理想情況,沒有干擾和初始化誤差的線速度模型。 然后對(duì)非線性過程進(jìn)行在線實(shí)驗(yàn)控制,改進(jìn)以提高所提出的控制器的瞬態(tài)性能。
圖1.注塑機(jī)和儀器圖。
圖2.整個(gè)成型過程控制系統(tǒng)的簡(jiǎn)化圖。
5.2 實(shí)驗(yàn)裝置
本機(jī)使用的機(jī)器是陳順?biāo)陕菪⑺軝C(jī)型號(hào)JM88MKIII。 該機(jī)的最大夾緊噸位為88噸,最大重量為128克。
整個(gè)控制系統(tǒng)的簡(jiǎn)化框圖如圖2所示,注射成型機(jī)的儀器可以在圖1中看到。速度控制系統(tǒng)由速度傳感器,伺服閥,MOOG MPC 2000控制器 ,以及具有擴(kuò)展I / O系統(tǒng)的個(gè)人計(jì)算機(jī)(PC)。如圖1所示,已經(jīng)安裝了類型為RH-N-0200M的Temposonics系列III型位移=速度傳感器,用于測(cè)量噴射位移和速度??焖夙憫?yīng)線性MOOG伺服閥(SV1)(Thayer&Davis,1980 ),J661-141型,配有液壓系統(tǒng)以控制噴射速度,如圖1所示。 MPC 2000控制器適用于控制機(jī)器序列和機(jī)筒溫度。在Pentium 133 MHz PC機(jī)上安裝了兩個(gè)數(shù)據(jù)采集卡:國(guó)家儀器AT MIO 16X卡提供數(shù)模轉(zhuǎn)換(DAC)和模數(shù)轉(zhuǎn)換(ADC),以及AT DIO 32F數(shù)字I / O卡進(jìn)行數(shù)字輸入輸出的PC和MPC 2000一套實(shí)時(shí)的節(jié)目已經(jīng)在內(nèi)部使用C語(yǔ)言開發(fā)的,在QNX實(shí)時(shí)多任務(wù)操作系統(tǒng)下之間(DIO)通信(版本 4.2),執(zhí)行注塑過程的數(shù)據(jù)采集,控制和運(yùn)行同步。
按照和Wittenmark(1995)的指導(dǎo)原則,速度控制器的采樣速率確定為5 ms。
用于所有實(shí)驗(yàn)的具有圖3所示幾何形狀的MOOG杯模具。 本工作中使用的材料是高密度聚乙烯(HDPE)(SABIC,Ladene)和聚丙烯(PP)(Pro-fax,HMC Polymers)。
5.3 模擬
在實(shí)驗(yàn)前進(jìn)行仿真,以理想條件測(cè)試控制算法,無(wú)干擾和初始化誤差。使用開環(huán)測(cè)試結(jié)果確定了模擬模型:引入過程輸入(圖1中SV1的伺服閥打開)的階躍變化來激發(fā)該過程,并記錄相應(yīng)的注入速度響應(yīng),然后 分析 在將MATLAB系統(tǒng)識(shí)別工具箱轉(zhuǎn)換為狀態(tài)空間模型之前,使用MATLAB系統(tǒng)識(shí)別工具箱識(shí)別自回歸(ARX)模型,如下所示:
在以下的模擬和實(shí)驗(yàn)中,僅使用狀態(tài)變量x1(注射速度)的測(cè)量。
最優(yōu)學(xué)習(xí)控制算法應(yīng)用于系統(tǒng)(32),簡(jiǎn)單加權(quán)因子Q = R = 1。 控制系統(tǒng)按照?qǐng)D4(a)中實(shí)線所示的步進(jìn)變化設(shè)定點(diǎn)。 第9周期的控制輸入隨機(jī)設(shè)置為0.04。 所得到的輸出響應(yīng)如圖1所示。 圖4(a),相應(yīng)的控制輸入如圖4(b)所示。如預(yù)期的那樣,第一個(gè)周期的系統(tǒng)輸出遠(yuǎn)遠(yuǎn)不到設(shè)定點(diǎn)。 系統(tǒng)輸出響應(yīng)在第二個(gè)周期內(nèi)迅速收斂。 第6循環(huán)和第10循環(huán)的系統(tǒng)輸出顯示了完美的設(shè)定點(diǎn)。 該模擬清楚地表明,最佳ILC可以非常好地控制過程,而無(wú)干擾和初始化錯(cuò)誤。 在模擬中注意到,控制器在設(shè)定點(diǎn)階躍變化之前提前幾步改變控制輸入,導(dǎo)致完美的跟蹤無(wú)延遲。 這是ILC的固有優(yōu)勢(shì)。
圖3. MOOG模具的幾何圖。
通過這樣優(yōu)秀的模擬結(jié)果,最優(yōu)ILC被實(shí)驗(yàn)應(yīng)用于實(shí)際注射成型過程,這是一個(gè)具有干擾和初始化誤差的非線性過程,具有上述選擇的簡(jiǎn)單加權(quán)矩陣Q和R.
圖4.使用最優(yōu)學(xué)習(xí)控制的模擬結(jié)果,Q = R = 1。
(a)輸出y,(b)相應(yīng)的輸入u。
5.4 實(shí)驗(yàn)結(jié)果與討論
最佳迭代學(xué)習(xí)控制應(yīng)用于實(shí)驗(yàn)使用材料HDPE的注射速度控制。作為模擬情況,加權(quán)矩陣Q和R都被選擇為1。 噴射速度被控制以跟隨階躍變化。如圖5(b)中的短劃線所示,初始輸入信號(hào),即第9周期的控制輸入被任意設(shè)定為10%??刂平Y(jié)果繪制在圖5中,其中圖5(a)示出了噴射速度響應(yīng)(輸出),圖5(b)示出了相應(yīng)的伺服閥開口(輸入)。 可以看出,隨著循環(huán)數(shù)k的增加,控制響應(yīng)變得振蕩,與早期獲得的模擬結(jié)果相矛盾。實(shí)驗(yàn)控制性能差的原因與初始化不確定性和干擾的積累與選擇的強(qiáng)前饋動(dòng)作有關(guān)。在最優(yōu)ILC設(shè)計(jì)中,線性時(shí)間不變模型用于近似注入速度的動(dòng)力學(xué),這是非線性和時(shí)變過程,不可避免地存在顯著的模型不匹配。由于電液系統(tǒng)的性質(zhì),初始噴射速度響應(yīng)不能精確重復(fù),導(dǎo)致噴射速度控制的初始化誤差的不確定性。此外,在來自不同來源的成型過程中存在干擾,例如材料的變化和/或操作條件。隨著干擾和模型不匹配的存在,大的導(dǎo)致強(qiáng)大的前饋動(dòng)作和弱反饋動(dòng)作。結(jié)果,減少了所提出的學(xué)習(xí)控制器的錯(cuò)誤拒絕能力。
實(shí)施第4節(jié)提出的方法。 因此,控制器用變化進(jìn)行修改,以確保系統(tǒng)收斂并提高最優(yōu)ILC的魯棒性。對(duì)于第一個(gè)周期,控制輸入設(shè)置為與最后一個(gè)實(shí)驗(yàn)相同的10%的常數(shù)值。 然后用= 1:0計(jì)算公式(27) - (29)中的增益矩陣S(t)和前饋項(xiàng),以確??焖俚目刂祈憫?yīng)收斂。對(duì)于以下周期,被設(shè)置為隨著周期數(shù)k的增加而指數(shù)地減小,在的關(guān)系中。使用材料HDPE作為最后一個(gè)實(shí)驗(yàn),并且速度被控制以遵循與先前情況相同的階躍變化曲線。所得到的速度響應(yīng)在圖6(a)中給出,其中相應(yīng)的閥開口如圖6(b)所示。 可以觀察到,如圖6(a)的虛線所示,第二循環(huán)的速度響應(yīng)迅速收斂。 第六個(gè)循環(huán)的控制已經(jīng)通過虛線劃分而已。 實(shí)線顯示了第十個(gè)周期的結(jié)果,盡管液壓系統(tǒng)的Qow和電荷引起的初始注入階段的延遲,速度跟蹤設(shè)定點(diǎn)軌跡。 顯然,在實(shí)施擬議修改后,控制振蕩已被消除。 控制響應(yīng)快速收斂,控制系統(tǒng)隨著循環(huán)次數(shù)的增加而穩(wěn)定。
圖5.使用恒定加權(quán)矩陣(HDPE) 圖6.使用改變加權(quán)矩陣(HDPE)的
的最佳學(xué)習(xí)控制的實(shí)驗(yàn)結(jié)果。 最優(yōu)學(xué)習(xí)控制的實(shí)驗(yàn)結(jié)果。
(a)噴射速度,(b)相應(yīng)的閥門開度。 (a)噴射速度,(b)相應(yīng)的閥門開度。
非線性和時(shí)變特性表明注射速度動(dòng)力學(xué)隨著工作點(diǎn)而變化,并且它們高度依賴于在模制過程中使用的材料。使用如圖7(a)中的黑色實(shí)線所示的具有弧形設(shè)定點(diǎn)輪廓的不同材料:PP進(jìn)一步測(cè)試修改的最佳ILC。 第一個(gè)循環(huán)的控制輸入隨機(jī)設(shè)置為7%。 結(jié)果如圖7所示。速度響應(yīng)迅速收斂; 第6和第11周期的響應(yīng)彼此重疊,表明在不同的成型條件下修改的最佳ILC的良好性能。
圖7.使用改變加權(quán)矩陣(PP)的最優(yōu)學(xué)習(xí)控制的實(shí)驗(yàn)結(jié)果。
(a)噴射速度,(b)相應(yīng)的閥門開度。
6。結(jié)論
本文針對(duì)不確定的初始化和擾動(dòng)過程,已經(jīng)考慮了基于最小化二次性能標(biāo)準(zhǔn)的最優(yōu)迭代學(xué)習(xí)控制算法的魯棒性和收斂性問題。已經(jīng)建立了一個(gè)非常有必要的條件,以確保迭代的魯棒BIBO穩(wěn)定性 跟蹤任意有界期望輸出時(shí)學(xué)習(xí)控制系統(tǒng)。 通過修改二次成本函數(shù)的加權(quán)矩陣,通過注塑成型過程的應(yīng)用,已經(jīng)提高了性能。 該算法的成功應(yīng)用使得有希望的是,通過適當(dāng)?shù)卣{(diào)整二次索引的加權(quán)矩陣,可以將最優(yōu)迭代學(xué)習(xí)控制應(yīng)用于其他工業(yè)批量工廠,特別是具有不確定的初始化和干擾的過程。
香港科技大學(xué)化學(xué)工程系,香港B研究信息與控制中心,大連理工大學(xué)。
大連交通大學(xué)2017屆本科畢業(yè)設(shè)計(jì)(論文)
目 錄
第一章 塑件及澆筑系統(tǒng) 1
1.1塑件成型成型工藝分析 1
1.2擬定模具的結(jié)構(gòu)形式 3
1.3澆注系統(tǒng)的設(shè)計(jì) 5
1.4 成型零件的結(jié)構(gòu)設(shè)計(jì)及計(jì)算 9
第二章 模架及其機(jī)構(gòu) 10
2.1模架的選定 10
2.2 排氣槽的設(shè)計(jì) 11
2.3脫膜推出機(jī)構(gòu)的設(shè)計(jì) 11
2.4抽芯機(jī)構(gòu)的設(shè)計(jì) 11
2.5 冷卻系統(tǒng)的設(shè)計(jì) 12
第三章 模具的工作原理 15
謝 辭 16
參考文獻(xiàn) 17
摘 要
注塑模具是模具工業(yè)的重要組成部分,在很大程度上反應(yīng)了一個(gè)國(guó)家的工業(yè)水平。塑料在當(dāng)今世界無(wú)處不用,因此塑料模具有很大發(fā)展,特別是注塑模。
本文設(shè)計(jì)了具有側(cè)向抽芯與弧形抽芯的彎管注射模具,對(duì)模具的側(cè)向抽芯與弧形抽芯進(jìn)行簡(jiǎn)單的分析,并用proe建立模具三維組裝圖,并導(dǎo)出模具裝配圖進(jìn)行修改。
論文中介紹了模具中各個(gè)系統(tǒng)的設(shè)計(jì),其中包括澆筑系統(tǒng)設(shè)計(jì),成型零部件的設(shè)計(jì),導(dǎo)向機(jī)構(gòu)的設(shè)計(jì),推出機(jī)構(gòu)的設(shè)計(jì)、溫度調(diào)節(jié)系統(tǒng)的設(shè)計(jì)、排氣系統(tǒng)的設(shè)計(jì)。最后用proe建立三維模型,并導(dǎo)出cad裝配圖。
關(guān)鍵詞: 模具設(shè)計(jì);弧形抽芯;側(cè)抽芯;PROE繪制3D圖。
Abstract
Injection molds are an important part of the mold industry and, to a large extent, reflect the industrial level of a country. Plastic is nowhere in the world today, so the plastic mold has great development, especially the injection mold.
In this paper, a curved injection mold with a side core and an arc core is designed. The side core and the core of the mold are analyzed briefly. The mold is assembled with proe and the mold assembly diagram is deduced. modify.
The design of the system in the mold is introduced, including the design of the pouring system, the design of the molded parts, the design of the guiding mechanism, the design of the launching mechanism, the design of the temperature regulating system and the design of the exhaust system. Finally, using proe to build three-dimensional model, and export cad assembly diagram.
Key Word: Mold design; arc core; side core; PROE draw 3D map.
第1章 塑件及澆筑系統(tǒng)
1.1塑件成型成型工藝分析
1.1.1塑件的分析
(1)外形尺寸 該塑件平均壁厚為2.5mm,塑件外形尺寸不大,塑件熔體流程不太長(zhǎng),適合于注射成型,如圖1-1所示。
圖1-1 塑件實(shí)體圖
(2)精度等級(jí) 每個(gè)尺寸的公差不一樣,有的屬于一般精度,有的屬于高精度,就按實(shí)際公差計(jì)算。
(3)脫模斜度 ABS屬無(wú)定型塑料,成型收縮率較小,參考《塑料成型工藝及模具設(shè)計(jì)》書中的表2-10選擇塑件上型芯和凹模的統(tǒng)一脫模斜度為1°。
1.1.2 ABS的性能分析
(1)使用性能 綜合性好,沖擊強(qiáng)度、力學(xué)強(qiáng)度較高,尺寸穩(wěn)定,耐化學(xué)性,電氣性能良好;易于成型和機(jī)械加工,其表面可鍍鉻,適合制作一般機(jī)械零件、減摩零件、傳動(dòng)零件和結(jié)構(gòu)零件。
(2)成型性能
1)無(wú)定型塑料。其品種很多,各品種的機(jī)電性能及成型特性也各有差異,應(yīng)按品種來確定成型方法及成型條件。
2)吸濕性強(qiáng)。含水量應(yīng)小于0.3%(質(zhì)量),必須充分干燥,要求表面光澤的塑件應(yīng)要求長(zhǎng)時(shí)間預(yù)熱干燥。
3)流動(dòng)性中等。溢邊料0.04mm左右。
4)模具設(shè)計(jì)時(shí)要注意澆注系統(tǒng),選擇好進(jìn)料口位置、形式。推出力過大或機(jī)械加工時(shí)塑件表面呈現(xiàn)白色痕跡。
5)ABS的主要性能指標(biāo),其性能指標(biāo)見表1
表1 ABS的性能指標(biāo)
密度/g·cm-3
1.02-1.08
屈服強(qiáng)度/MPa
50
比體積/cm3·g-1
0.86-0.98
拉伸強(qiáng)度/MPa
38
吸水率(%)
0.2-0.4
拉伸彈性模量/MPa
1.4×103
熔點(diǎn)/℃
130-160
抗彎強(qiáng)度/MPa
80
計(jì)算收縮率(%)
0.4-0.7
抗壓強(qiáng)度/MPa
53
比熱容/(㎏·℃)-1
1470
彎曲彈性模量/MPa
1.4×103
1.1.3 ABS的注射成型及工藝參數(shù)
(1)注射成型過程
1)成型前的準(zhǔn)備。對(duì)ABS的色澤、粒度和均勻度等進(jìn)行檢驗(yàn),由于ABS吸水性較大,成型前應(yīng)進(jìn)行充分的干燥。
2)注射過程。塑件在注射機(jī)料筒內(nèi)經(jīng)過加熱、塑化達(dá)到流動(dòng)狀態(tài)后,由模具的澆注系統(tǒng)進(jìn)入模具型腔進(jìn)行成型,其過程可分為充模、壓實(shí)、保壓、倒流和冷卻五個(gè)階段。
3)塑件的后處理。處理的介質(zhì)為空氣和水,處理溫度為60-70℃,處理時(shí)間為16-20s。
(2)注射工藝參數(shù)
1)注射機(jī):螺桿式,螺桿轉(zhuǎn)數(shù)為30r/min。
2)料筒溫度(℃):后段150-170
中段165-180
前段180-200
3)噴嘴溫度(℃):170-180
4)模具溫度(℃):50-80
5)注射壓力(MPa):60-100
6)成型時(shí)間(s):22.7(注射時(shí)間取1,冷卻時(shí)間13.7,輔助時(shí)間8)
1.2擬定模具的結(jié)構(gòu)形式
1.2.1分型面位置的確定
分型面應(yīng)選在端蓋截面積最大且利于開模取出塑件的平面,塑件圖樣可以看出該塑件為圓形彎管結(jié)構(gòu),分型面取在其直徑所在平面上,同時(shí)該塑件需進(jìn)行側(cè)抽芯與螺旋抽芯,所以分型面取在塑件直徑與弧形部分直徑共同所在平面,如圖圖1-2:
圖1-2 分型面
1.2.2型腔數(shù)量和排列方式的確定
型腔數(shù)量的確定 該塑件采用的精度一般在2-3級(jí)之間,且為大批量生產(chǎn),可采取一模多腔的結(jié)構(gòu)模式。但是,考慮到塑件尺寸、模具結(jié)構(gòu)尺寸的大小關(guān)系,以及制造費(fèi)用和各種成本等因素,以及其抽芯及弧形抽芯結(jié)構(gòu),定為一模一腔結(jié)構(gòu)形式。
1.2.3注射機(jī)型號(hào)的確定
(1) 注射量的計(jì)算 通過三維軟件建模設(shè)計(jì)分析計(jì)算得:塑件體積: ,塑件質(zhì)量:m塑=V塑=15.01581.02=15.316g,式中,參考表1可取1.02g/cm3。
(2)澆注系統(tǒng)凝料體積的初步估算 澆注系統(tǒng)的凝料體積在設(shè)計(jì)之前是不能確定準(zhǔn)確的數(shù)值,但是可以根據(jù)經(jīng)驗(yàn)按照塑件體積的0.2倍來估算,故一次注入模具型腔塑料熔體的總體積為
V總=V塑(1+0.2)1=15.01581.2cm3=18.019cm3
(3)選擇注射機(jī) 根據(jù)第二步計(jì)算得出一次注入模具型腔的塑料總質(zhì)量V總=15.0186cm3,并結(jié)合式V公=V總/0.8,則有:V總/0.8=18.019/0.8cm3=22.5237cm3。根據(jù)以上計(jì)算,初步選定公稱注射量為60cm3,注射機(jī)型號(hào)為xs-zy-60/40臥式注射機(jī),其主要技術(shù)參數(shù)見表2
表2 注射機(jī)主要技術(shù)參數(shù)
理論注射容量/cm3
60
移模行程/mm
270
螺桿柱塞直徑/mm
V注射壓力/Mpa
35
最大模具厚度/mm
250
135
最小模具厚度/mm
150
注射速率/g·s-1
70
鎖模形式
液壓
塑化能力/g·s-1
24
定位孔徑/mm
80
注射方式
螺桿式
噴嘴球直徑/mm
10
鎖模力/KN
400
噴嘴移出量/mm
20
拉桿間距/mm
330×300
(4)注射機(jī)的相關(guān)參數(shù)的校核
1)注射壓力校核。查表1可知,ABS所需注射壓力為80-110MPa,這里取p0=100MPa,該注射機(jī)的公稱注射壓力p公=135MPa,注射壓力安全系數(shù)k1=1.25-1.4,這里取k1=1.3,則:
K1p0=1.3×100=130MPa<p公,所以,注射機(jī)注射壓力合格。
2)鎖模力校核
①根據(jù)三維軟件分析得到,塑件在分型面上的投影面積A塑=2220.11mm2。
②澆注系統(tǒng)在分型面上的投影面積A澆,即流道凝料在分型面上的投影面積A澆的值,可以按照多型腔模的統(tǒng)計(jì)分析來確定。A澆是每個(gè)塑件在分型面上的投影面積A塑的0.2-0.5倍。由于本流道設(shè)計(jì)簡(jiǎn)單,分流道相對(duì)較短,因此流道凝料投影面積適當(dāng)取小一些。這里取A澆=0.2A塑。
③塑件和澆注系統(tǒng)在分型面上總的投影面積A總,則A總=n(A塑+A澆)=n(A塑+0.2A塑)=1.2A塑=1.2×2220.11mm2=2664.132mm2
④模具型腔內(nèi)的脹型力F脹,則F脹=A總p模=2664.1×35N=93245N=93.245KN
式中,p模是型腔的平均計(jì)算壓力值。p模是模具型腔內(nèi)的壓力,通常取注射壓力的20%-40%,大致范圍是25-40MPa。對(duì)于粘度較大的精度較高的塑料制品應(yīng)取較大值。ABS屬于中等粘度塑料及有精度要求的塑件,故p模取35MPa。
查表2可得該注射機(jī)的公稱鎖模力F鎖=400KN,鎖模力安全系數(shù)為k2=1.1-1.2 這里取k2=1.2,則
k2F脹=1.2F脹=1.2×93.245=111.9KN<F鎖,所以,注射機(jī)鎖模力合格。
對(duì)于其他安裝尺寸的校核要等模架選定,結(jié)構(gòu)尺寸確定后方可進(jìn)行。
1.3澆注系統(tǒng)的設(shè)計(jì)
1.3.1 主流道的設(shè)計(jì)
主流道通常位于模具中心塑料熔體的入口處,它將注射機(jī)噴嘴注射出的熔體導(dǎo)入分流道或型腔中。主流道的形狀為圓錐形,以便熔體流動(dòng)和開模時(shí)主流道凝料的順利拔出。主流道的尺寸直接影響到熔體的流動(dòng)速度和充模時(shí)間。另外,由于其與高溫塑料熔體及注射機(jī)噴嘴反復(fù)接觸,因此設(shè)計(jì)中常設(shè)計(jì)成可拆卸更換的澆口套。
(1)主流道尺寸
1)主流道的長(zhǎng)度:小型模具L主應(yīng)盡量小于60mm,本次設(shè)計(jì)中初取35mm進(jìn)行設(shè)計(jì)。
2)主流道小端直徑:d=注射機(jī)噴嘴尺寸+(0.5~1)mm=(4+1)mm=5mm。
3)主流道大端直徑:d′=d+2L主tan(α/2)≈7mm,式中α=3°。
4)主流道球面半徑:SR0=注射機(jī)噴嘴球半徑+(1~2)mm=10+2=12mm。
5)球面的配合高度 :h=3mm。
(2)主流道的凝料體積
V主=L主(R2主+r2主+R主r主)=×(3.52+2.52+3.5×2.5)=1426.81mm3=1.43cm3。
(3)主流道當(dāng)量半徑 Rn=2.5+3.5/2=3mm。
(4)主流道澆口套的形式 主流道襯套為標(biāo)準(zhǔn)件可選購(gòu)。主流道小端入口處與注射機(jī)噴嘴反復(fù)接觸,易磨損。對(duì)材料的要求較嚴(yán)格,因而盡管小型注射??梢詫⒅髁鞯罎部谔着c定位圈設(shè)計(jì)成一個(gè)整體,但考慮上述因素通常仍然將其分開來設(shè)計(jì),以便于拆卸更換。同時(shí)也便于選用優(yōu)質(zhì)鋼材進(jìn)行單獨(dú)加工和熱處理。設(shè)計(jì)中常采用碳素工具鋼(T8A或T10A),熱處理淬火表面硬度為50~55HRC。
1.3.2分流道的設(shè)計(jì)
(1) 分流道的布置形式 在設(shè)計(jì)時(shí)應(yīng)考慮盡量減少在流道內(nèi)的壓力損失和盡可能避免熔體溫度降低,同時(shí)還要考慮小分流道的容積和壓力平衡。為避免注塑時(shí)型芯偏移,在彎管弧形位置設(shè)立兩對(duì)稱澆口。流道結(jié)構(gòu)復(fù)雜,根據(jù)型腔的結(jié)構(gòu)設(shè)計(jì),采用三級(jí)分流道結(jié)構(gòu)。
(2) 分流道截面形狀 常用的分流道截面形狀有圓形,梯形,U形,六角形等,為了加工和凝料的脫膜,分流道大多設(shè)計(jì)在分型面上。本設(shè)計(jì)采用半圓形與圓形截面,其加工工藝性好,且塑料熔體的熱量散失、流動(dòng)阻力均不大。
(3) 三級(jí)分流道的計(jì)算
1)三級(jí)分流道的長(zhǎng)度 三級(jí)分流道關(guān)于弧形型芯對(duì)稱,單邊取L分=11.5mm。
2)分流道的當(dāng)量直徑 因?yàn)樵撍芗馁|(zhì)量,根據(jù)式,分流道的當(dāng)量直徑為
=mm
3)分流道的截面形狀 半圓形
4)分流道截面尺寸 由于分流道較為復(fù)雜,整體形狀采用角度為圓錐形狀,增加壓強(qiáng),可計(jì)算出小端當(dāng)量直徑d=1.792mm,大段當(dāng)量直徑D=2.576mm;則三級(jí)分流道的截面直徑分別為d’=d=1.792=2.78,d’取3mm;同理,求出D’=D=3.64mm,D’取4mm。
5)分流道的凝料體積
V分=L分(R2分+r2分+R分r分)=×11.5×(22+1.52+1.5×2)=110mm3=0.11cm3
6)校核剪切速率
確定注射時(shí)間: 查《塑料成型工藝及模具設(shè)計(jì)》中表4-8,可取t=1.0s。
計(jì)算分流道體積流量:q分=(V分+V塑)/1=0.11+7.51=7.62cm3/s。
由《塑件成型工藝及模具設(shè)計(jì)》中式(4-20)可得剪切速率
==s-1=1.52×103s-1
該分流道的剪切速率處于澆口主流道與分流道的最佳剪切速率5×102~5×103s-1之間,所以,分流道內(nèi)熔體的剪切速率合格。
(4)二級(jí)分流道的計(jì)算
1)分流道的長(zhǎng)度L分=25mm。
2)分流道的當(dāng)量直徑
=mm
3)分流道的截面形狀 圓形
4)分流道截面尺寸 由于分流道較為復(fù)雜,整體形狀采用角度為圓錐形狀,增加壓強(qiáng),可計(jì)算出小端當(dāng)量直徑d=1.909mm,大段當(dāng)量直徑D=3.655mm;因?yàn)镈應(yīng)大于三級(jí)分流道直徑,則D取4.5mm,d取2.5mm。
5)分流道的凝料體積
V分=L分(R2分+r2分+R分r分)=×(2.252+1.252+1.25×2.25)=247.07mm3=0.247cm3
6)校核剪切速率
確定注射時(shí)間: 查《塑料成型工藝及模具設(shè)計(jì)》中表4-8,可取t=1.0s。
計(jì)算分流道體積流量:
q分=(V分+V三級(jí)+V塑)/1=0.11+7.51+0.247=7.963cm3/s。
由《塑件成型工藝及模具設(shè)計(jì)》中式(4-20)可得剪切速率
==s-1=1.56×103s-1
該分流道的剪切速率處于澆口主流道與分流道的最佳剪切速率5×102~5×103s-1之間,所以,分流道內(nèi)熔體的剪切速率合格。
(5) 一級(jí)分流道的計(jì)算
1) 分流道的長(zhǎng)度 取L分=60mm。
2) 分流道的截面積 半圓形
3) 分流道的截面尺寸 該分流道為主流道與二級(jí)分流道相連的通道,選取其直徑D分=6mm
4) 分流道的凝料體積 V分 =L分A分==847.8mm3
5) 校核剪切速率
確定注射時(shí)間: 查《塑料成型工藝及模具設(shè)計(jì)》中表4-8,可取t=1.0s。
計(jì)算分流道體積流量:
q分=(V分+V二級(jí)+V三級(jí)+V塑)/1=0.22+7.51+0.565+0.494=16.3cm3/s。
由《塑件成型工藝及模具設(shè)計(jì)》中式(4-20)可得剪切速率
==s-1=1.8×103s-1
該分流道的剪切速率處于澆口主流道與分流道的最佳剪切速率5×102~5×103s-1之間,所以,分流道內(nèi)熔體的剪切速率合格。
1.3.3 澆口的設(shè)計(jì)
該塑件要求不允許有裂紋和變形缺陷,表面質(zhì)量要求較高,采用一模一腔注射,由于澆注系統(tǒng)復(fù)雜,為保證注射壓力,因此采用針點(diǎn)澆口,其截面為半圓形,易于加工,便于試模后的修正,且開設(shè)在分型面上,從型腔的邊緣進(jìn)料。
(1) 點(diǎn)澆口尺寸的確定
① 計(jì)算點(diǎn)澆口的直徑 根據(jù)《塑件成型工藝及模具設(shè)計(jì)》中表4-10,可得點(diǎn)澆口的直徑d的取值范圍為0.3~2mm,這里選d澆=1mm
③計(jì)算側(cè)澆口的長(zhǎng)度。根據(jù)《塑件成型工藝及模具設(shè)計(jì)》中表4-10,可得側(cè)澆口的長(zhǎng)度L澆一般選用0.7mm~2.5mm,這里選L澆為0.7mm
(2)校核澆口的剪切速率
1)確定注射時(shí)間:查表2,可取t=1.0s;
2)計(jì)算澆口的體積流量:q澆==15.0158/2.0=7.51cm3/s
3)計(jì)算澆口的剪切速率:==2.23×104mm3/s
該側(cè)澆口的剪切速率處于澆口與分流道的最佳剪切速率5×103~5×104s-1之間,所以,澆口的剪切速率校核合格。
1.3.4冷料穴的設(shè)計(jì)及計(jì)算
冷卻穴位于一級(jí)分流道延伸段,以及二級(jí)分流道正對(duì)面動(dòng)模板上,其作用主要是收集熔融體前鋒的冷料,防止冷料進(jìn)入模具型腔而影響制品的表面質(zhì)量。采用推桿推出方式推出塑件,二級(jí)分流道采用z型拉料桿匹配的冷料穴,一級(jí)分流道采用脫料銷結(jié)構(gòu),開模時(shí),拉料桿與脫料銷分別將澆筑系統(tǒng)凝料脫出。
1.3.5校核主流道的剪切速率
根據(jù)設(shè)計(jì)要求,選取側(cè)澆口,尺寸詳見圖紙校核主流道的剪切速率
(1)計(jì)算主流道的體積流量
q主==17.7074cm3/s
(2)計(jì)算主流道的剪切速率
=s-1
主流道內(nèi)熔體的剪切速率處于澆口與分流道的最佳剪切速率5102~5×103s-1之間,所以主流道的剪切速率校核合格。
1.4 成型零件的結(jié)構(gòu)設(shè)計(jì)及計(jì)算
1.4.1成型零件的結(jié)構(gòu)設(shè)計(jì)
(1)凹模的結(jié)構(gòu)設(shè)計(jì)
凹模是成形制品的外表面的成型零件。按凹模結(jié)構(gòu)的不同可將其分為整體式、整體嵌入式、組合式和鑲拼式四種。根據(jù)對(duì)塑件的結(jié)構(gòu)分析,本設(shè)計(jì)中采整體式凹模。
(2)凸模的結(jié)構(gòu)設(shè)計(jì)(型芯)
凸模是成形塑件內(nèi)表面的成型零件,通常可以分為整體式和組合式兩種類型。通過對(duì)塑件的結(jié)構(gòu)分析知,型芯有兩個(gè),一個(gè)為直線抽芯,一個(gè)為弧形抽芯。
1.4.2成型零件鋼材的選用
根據(jù)對(duì)成型塑件的整體分析,該塑件的成型零件要有足夠的剛度、強(qiáng)度、耐磨性及良好的抗疲勞性能,同時(shí)考慮它的機(jī)械加工性能和拋光性能。又因?yàn)樵撍芗榇笈可a(chǎn),所以構(gòu)成型腔的嵌入式凹模鋼材選用P20(美國(guó)牌號(hào))。對(duì)于成型塑件型芯來說,由于脫膜時(shí)與塑件的磨損嚴(yán)重,因此鋼材選用高合金工具鋼Cr12MoV。
1.4.3成型零件工作尺寸的計(jì)算
成型零件工作尺寸由三維軟件自動(dòng)生成,具體數(shù)值參考三維建模
11
第2章 模架及其機(jī)構(gòu)
2.1模架的選定
2.1.1 各模板尺寸的確定
模架是注射模的骨架和基體,通過它將模具的各個(gè)部分有機(jī)聯(lián)系成一個(gè)整體,也可以說塑料的模架起裝配、定位和安裝作用。塑料模架現(xiàn)已標(biāo)準(zhǔn)化和系統(tǒng)化了,因此在設(shè)計(jì)時(shí)只需塑件的結(jié)構(gòu)和尺寸來直接選用即可,也可以自己設(shè)計(jì)。
由于該模具采用側(cè)澆口,且需要抽芯,結(jié)構(gòu)較為復(fù)雜,參照標(biāo)準(zhǔn)選P1型模架。已知該塑件在分型面上的投影寬度為:W′=100mm,W′≤W2-10 即W2≥110mm,綜合考慮抽芯機(jī)構(gòu)的橫向移動(dòng)距離,查知,選W2=250mm,對(duì)應(yīng)模架為W=250mm,推桿直徑d=3mm。
已知塑件在分型面上的投影長(zhǎng)度為L(zhǎng)′=80mm,根據(jù)經(jīng)驗(yàn)公式L′≤Lt-d-30,即Lt≥120mm。選Lt=122mm,對(duì)應(yīng)的模架寬度為L(zhǎng)=160mm,故選模架為A3型標(biāo)準(zhǔn)模架,其規(guī)格為W×L=160×160mm。
標(biāo)準(zhǔn)模架選完后,查《塑料成型工藝及模具設(shè)計(jì)》中表4-38可以得到,W1=200mm,厚度H1=20mm,側(cè)向抽芯滑塊厚度由型芯計(jì)算可知A=104mm,脫模板厚度H3=25mm,動(dòng)模厚度B=16mm;根據(jù)動(dòng)模和型腔板厚度可確定墊塊的厚度,又墊塊寬度W3=32mm,則墊塊尺寸,W3×C=32mm×80mm;推桿固定板尺寸為W2×H5=94mm×12.5mm;推板尺寸為W2×H4=94mm×16mm。如圖3
圖3模架圖
2.1.2 模架各尺寸的校核
根據(jù)所選注射機(jī)來校核模具設(shè)計(jì)的尺寸。
(1)模具平面尺寸250mm×250mm<330mm×300mm(拉桿間距),校核合格。
(2)模具高度尺寸205mm,150mm<265mm<250mm(模具的最大厚度和最小厚度),校核合格。
(3)模具的開模行程S=H1+H2+(5~10)mm=(135+30)mm=165mm<270mm(開模行程),校核合格。
2.2 排氣槽的設(shè)計(jì)
排氣是注射模設(shè)計(jì)中不可忽視的一個(gè)問題。在注射成型中,若模具排氣不良,型腔內(nèi)的氣體受壓縮將產(chǎn)生很大的背壓,阻止熔體正常快速充模,同時(shí)氣體壓縮所產(chǎn)生的熱量可能使塑料燒焦。
一般情況下,模具不開設(shè)專門的排氣槽,氣體也能有分型面的間隙中排出。由于本課題設(shè)計(jì)的是彎管注射模具,有一個(gè)分型面,型腔內(nèi)的氣體是完全可以由分型面與動(dòng)模之間的軸向間隙排出。又因?yàn)榇怂芗暮穸容^小,所以該模具適合利用配合間隙直接進(jìn)行排氣,不需要開排氣槽。
2.3脫膜推出機(jī)構(gòu)的設(shè)計(jì)
塑件從模具上取下以前還有一個(gè)從模具的成型零部件上脫出的過程,使塑件從成型零部件上脫出的機(jī)構(gòu)稱為脫模機(jī)構(gòu)。主要由推出零件,推出零件固定板和推板,推出機(jī)構(gòu)的導(dǎo)向和復(fù)位部件等組成,尺寸由模型架規(guī)定。
2.3.1脫模機(jī)構(gòu)的選擇
脫模機(jī)構(gòu)按其推出動(dòng)作的動(dòng)力來源分為手動(dòng)推出機(jī)構(gòu),機(jī)動(dòng)推出機(jī)構(gòu),液壓和氣動(dòng)推出機(jī)構(gòu)。根據(jù)推出類別還可分為推桿推出機(jī)構(gòu)、套管推出機(jī)構(gòu)、推板推出機(jī)構(gòu)、推塊推出機(jī)構(gòu)、利用成型零部件推出和斜滑桿側(cè)抽芯機(jī)構(gòu)等。
本設(shè)計(jì)中采用推桿推出和側(cè)向抽芯機(jī)構(gòu)與弧形抽芯使塑料制件順利脫模。
2.4抽芯機(jī)構(gòu)的設(shè)計(jì)
(1)該套模具采用導(dǎo)桿導(dǎo)滑,利用限位板與導(dǎo)桿力的傳導(dǎo)使型芯沿著斜度方向運(yùn)動(dòng),實(shí)現(xiàn)側(cè)向與弧形抽芯的目的。為了滑塊的位置,采用了限位塊,限制了滑塊水平方向上的運(yùn)動(dòng)距離。
(2)抽芯機(jī)構(gòu)的計(jì)算
1)直線抽芯距離 S抽=h+(2~3)mm=63mm
2)斜導(dǎo)柱長(zhǎng)度L=L1+L2+L3+L4+L5+(8~15)=183+(8~15)
3)所以取直徑為12.5mm,長(zhǎng)度為200,傾斜角度為25的標(biāo)準(zhǔn)斜導(dǎo)柱
4)開模行程 H=Scot=135mm。
(3) 弧形抽芯的計(jì)算
開模行程為135mm,則弧形導(dǎo)柱在y軸方向上傾斜角度為
=25
2.5 冷卻系統(tǒng)的設(shè)計(jì)
在注射模中,模具的溫度直接影響到塑件的質(zhì)量和生產(chǎn)效率。由于各種塑料的性能和成型工藝要求不同,對(duì)模具溫度的要求也不相同。一般注射到模具內(nèi)的塑料粉體的溫度為左右,熔體固化成為塑件后,從左右的模具中脫模、溫度的降低是依靠在模具內(nèi)通入冷卻水,將熱量帶走。對(duì)于要求較低模溫(一般小于)的塑料,如本設(shè)計(jì)中的ABS,僅需要設(shè)置冷系統(tǒng)即可,因?yàn)榭梢酝ㄟ^調(diào)節(jié)水的流量就可以調(diào)節(jié)模具的溫度。
模具的冷卻主要采用循環(huán)水冷卻方式,模具的加熱有通入熱水、蒸汽,熱油和電阻絲加熱等。
2.5.1溫度調(diào)節(jié)對(duì)塑件質(zhì)量的影響
注射模的溫度對(duì)于塑料熔體的充模流動(dòng)、固化成型、生產(chǎn)效率以及制品的形狀和尺寸精度都有影響,對(duì)于任一個(gè)塑料制品,模具溫度波動(dòng)過大都是不利的。過高的模溫會(huì)使塑件在脫模后發(fā)生變形,若延長(zhǎng)冷卻時(shí)間又會(huì)使生產(chǎn)率下降。過低的模溫會(huì)降低塑料的流動(dòng)性,使其難于充模,增加制品的內(nèi)應(yīng)力和明顯的熔接痕等缺陷。
2.5.2冷卻介質(zhì)
ABS屬中度黏度材料,其成型溫度及模具溫度分別為200℃和50~80℃。所以,模具初步選定為50℃,用常溫水對(duì)模具進(jìn)行冷卻。
2.5.3冷卻系統(tǒng)的簡(jiǎn)單計(jì)算
(1)單位時(shí)間內(nèi)注入模具中的塑料熔體的總質(zhì)量W
①塑料制品的體積
②塑料制品的質(zhì)量
③塑件壁厚為2.5mm,可以查《塑料成型工藝及模具設(shè)計(jì)》表4-34得,t冷=13.7s。取注射時(shí)間t注=1s,脫膜時(shí)間t脫=8s,則注射周期:t=t注+t冷+t脫=(13.7+1+8)s=22.7s。由此得每小時(shí)注射次數(shù):N=(3600/22.7)=158次。
④單位時(shí)間內(nèi)注入模具中的塑料熔體的總質(zhì)量:W==158×0.0181kg=2.86kg/h。
確定單位質(zhì)量的塑件在凝固時(shí)所放出的熱量,查《塑料成型工藝及模具設(shè)計(jì)》表4-35直接可知ABS的單位熱量的值的范圍在(310~400)之間,故可取。
(2)計(jì)算冷卻水的體積流量 設(shè)冷卻水道入口的水溫為=22℃,出水口的溫度為=25℃,取水的密度為1000kg/m3,水的比熱容。則根據(jù)公式可得:
(4)確定冷卻水路的直徑d 當(dāng)時(shí),查《塑料成型工藝及模具設(shè)計(jì)》表4-30可知,為了使冷卻水處于湍流狀態(tài),取模具冷卻水孔的直徑為d=8mm
(5)冷卻水在管內(nèi)的流速v
(6)求冷卻管壁與水交界面的膜傳熱系數(shù)h 因?yàn)槠骄疁貫?3.5℃,查《塑料成型工藝及模具設(shè)計(jì)》表4-31可得f=6.7,則有
(7)計(jì)算冷卻水通道的導(dǎo)熱總面積A
(8)計(jì)算模具所需冷卻水管的總長(zhǎng)度L
(9)冷卻水路的根數(shù)x 設(shè)每條水路的長(zhǎng)度l=200mm,則冷卻水路的根數(shù)為
1。
2.5.4 冷卻水道在動(dòng)模和定模中的位置
冷卻水道的位置取決于制品的形狀和定、動(dòng)模板的厚度,原則上冷卻水道應(yīng)設(shè)置在塑料向模具熱傳導(dǎo)困難的地方,根據(jù)冷卻系統(tǒng)的設(shè)計(jì)原則,冷卻水道應(yīng)圍繞模具所成型的制品,且盡量排列均勻一致。不少小型模具的型腔時(shí)直接在模板上加工而成的(也可以采用拼鑲結(jié)構(gòu),但是由于模具尺寸較小,所以型腔與型芯的鑲件尺寸更?。?,對(duì)于這類模具,可以直接在模板上設(shè)置冷卻水道。
在模板上直接設(shè)置冷卻水道,同樣應(yīng)遵循冷卻系統(tǒng)的設(shè)計(jì)原則,使冷卻水道盡量靠近型腔表面和盡量圍繞型腔,使制品在成型過程中冷卻均勻。
第3章 模具的工作原理
在彈簧(16),頂銷(17)的作用下,定模板(2)與定模座板(1)先開啟分型,主澆道被脫料銷(15)頂出,當(dāng)限位釘(19)達(dá)到導(dǎo)柱(22)槽端點(diǎn)時(shí),定模板(1)與動(dòng)模板(2)分型,此時(shí)斜導(dǎo)柱和弧形導(dǎo)柱撥動(dòng)兩滑塊,完成直型芯與弧形型芯的抽芯,同時(shí)拉料桿將分流道與流道分離,澆道頭自行落下,頂桿和拉料桿分別將制品和分澆道頂出。
謝 辭
這次的畢業(yè)論文設(shè)計(jì)總結(jié)是在我的指導(dǎo)老師林老師親切關(guān)懷和悉心指導(dǎo)下完成的。從畢業(yè)設(shè)計(jì)選題到設(shè)計(jì)完成,林老師給予了我耐心指導(dǎo)與細(xì)心關(guān)懷,有了林老師耐心指導(dǎo)與細(xì)心關(guān)懷我才不會(huì)在設(shè)計(jì)的過程中迷失方向,失去前進(jìn)動(dòng)力。林老師有嚴(yán)肅的科學(xué)態(tài)度,嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神和精益求精的工作作風(fēng),這些都是我所需要學(xué)習(xí)的,感謝林老師給予了我這樣一個(gè)學(xué)習(xí)機(jī)會(huì),謝謝!
感謝與我并肩作戰(zhàn)的舍友與同學(xué)們,感謝關(guān)心我支持我的朋友們,感謝學(xué)校領(lǐng)導(dǎo)、老師們,感謝你們給予我的幫助與關(guān)懷;感謝機(jī)械學(xué)院,感謝大學(xué)四年陪我走過來的每一個(gè)人!有了你們我的人生才豐富,有了你們我在奮斗的路上不孤單。謝謝你們!
參考文獻(xiàn)
[1]陳孝康,周興?。畬?shí)用模具技術(shù)手冊(cè)[M].北京:中國(guó)輕工業(yè)出版社,2001.
[2]彭建生.模具設(shè)計(jì)與加工速查手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2005.
[3]申開智.塑料成型模具[M].北京:中國(guó)輕工業(yè)出版社,2002.
[4]劉守勇.機(jī)械制造工藝與機(jī)床夾具[M].北京:機(jī)械工業(yè)出版社,2000.
[5]張錚.模具制造技術(shù)[M] .北京:電子工業(yè)出版社,2002.
[6]丁聞.實(shí)用塑料成型模具設(shè)計(jì)手冊(cè)[M].西安:西安交通大學(xué)出版社,1993.
[7]李志剛,夏巨諶.中國(guó)模具設(shè)計(jì)大典[M].中國(guó)機(jī)械工程學(xué)會(huì),2003.
[8]潘寶權(quán).模具制造工藝[M].北京:機(jī)械工業(yè)出版社,2004.
[9]王伯平.互換性與測(cè)量技術(shù)[M].北京:機(jī)械工業(yè)出版社,2002.
[10]李益民.機(jī)械制造工藝設(shè)計(jì)簡(jiǎn)明手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1993.
[11]李云程.模具制造技術(shù)[M].北京:機(jī)械工業(yè)出版社,2002.
[12]黃誠(chéng)駒,李鄂琴.逆向工程項(xiàng)目實(shí)訓(xùn)教程[M].北京:電子工業(yè)出版社,2004.
[13]劉彥國(guó),嚴(yán)慧萍.注塑成型模腔數(shù)量的擇優(yōu)確定[J].電加工與模,2006.
21