喜歡這個資料需要的話就充值下載吧。。。資源目錄里展示的全都有預覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
SY-025-BY-5
畢業(yè)設計(論文)中期檢查表
填表日期
年 月 日
迄今已進行 周剩余 周
學生姓名
系部
專業(yè)、班級
指導教師姓名
職稱
從事
專業(yè)
是否外聘
□是■否
題目名稱
學
生
填
寫
畢業(yè)設計(論文)工作進度
已完成主要內容
待完成主要內容
存在問題及努力方向
學生簽字:
指導教師
意 見
指導教師簽字: 年 月 日
教研室
意 見
教研室主任簽字: 年 月 日
畢業(yè)設計(論文)任務書
學生姓名
系部
機電工程學院
專業(yè)、班級
指導教師姓名
職稱
教授
從事
專業(yè)
機械工程
是否外聘
□是■否
題目名稱
X6130臥式萬能升降臺銑床總體布局及主軸箱設計
一、 設計(論文)目的、意義
銑床(milling machine)系指主要用銑刀在工件上加工各種表面的機床。通常銑
刀旋轉運動為主運動,工件(和)銑刀的移動為進給運動。它可以加工平面、垂直面、斜面、各種溝槽或成型面,如果配一些附件(如分度頭)也可以加工螺旋槽,凸輪、成型面等。
臥式萬能升降臺 有縱、橫、垂三個進給方向,機床操縱方便,靈活可靠,機床精度保持性好,符合國際標準。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較復雜的型面,效率較刨床高,在機械制造和修理部門得到廣泛應用,適用于各類機械加工部門。
通過銑床運動機械變速傳動系統(tǒng)的結構設計,使學生在擬定傳動和變速的結構的結構方案過程中,得到設計構思,方案分析,結構工藝性,機械制圖,零件計算,編寫技術文件和查閱技術資料等方面的綜合訓練,樹立正確的設計思想,掌握基本的設計方法,并培養(yǎng)學生具有初步的結構分析,結構設計和計算能力
二、設計(論文)內容、技術要求
(一)設計內容
1、X6130主軸變速及傳動機構設計;
2、X6130外觀總體布局設計;
3、主軸、齒輪及零件部件設計和驗算。
(二)技術要求
X6130主要規(guī)格及技術參數(shù):工作臺臺面面積(寬×長):300mm×1150mm 主軸轉速35-1600r/min
工作臺最大行程(機動):
縱向 680mm
橫向 235mm
垂向 400mm
三、設計(論文)完成后應提交的成果
(一)計算說明部分
設計說明書2份。
(二)圖紙部分
1.A0圖紙2張;
2.A1圖紙1張;
3.A3圖紙5張
四、設計(論文)進度安排
3月01日~3月07日 查閱資料;
3月08日~3月14日 消化資料;
3月15日~3月21日 撰寫開題報告;
3月22日~4月11日 方案設計、寫說明書草稿;
4月12日~4月25日 畫草圖、寫說明書草稿;
4月26日~5月23日 畫CAD圖、整理說明書;
5月24日~5月30日 打印說明書
5月31日~6月20日 準備答辯。
五、主要參考資料
[1]徐澋.機械設計手冊[M].北京:機械工業(yè)出版社,2002.03
[2]王世剛,張秀親,苗淑杰.機械設計實踐[M].哈爾濱:哈爾濱工程大學出版社,2003.08
[3]周湛學.銑工[M].北京:化學工業(yè)出版社,2005.09
[4]李滬曾,G.Spur徐柄楠.升降臺銑床動態(tài)實驗分析[D].同濟大學學報,2006.05
[5]周宗明.金屬切削機床[M].北京:機械工業(yè)出版社,2004.09
[6]王三民,諸文俊.機械原理與設計[M].北京:機械工業(yè)出版社,2001.04
[7]侯珍秀.機械系統(tǒng)設計[M].哈爾濱:哈爾濱工業(yè)大學出版社,2004.11
[8]陳易新.金屬切削機床課程設計指導書[M].北京:機械工業(yè)出版社,2004.07
[9]劉品,徐曉希.機械精度設計與檢測基礎[M].哈爾濱:哈爾濱工業(yè)大學出版社,2004.04
[10]Creamer R H. Machine Design[M]. Addison-Wesley Pub.Co.,1996.06
六、備注
指導教師簽字:
年 月 日
教研室主任簽字:
年 月 日
GEAR AND SHAFT INTRODUCTION
Abstract: The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, useding for many situations respectively.So we must be the multilayers to the understanding of the wheel gear and shaft in many ways .
Key words: Wheel gear;Shaft
In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.
Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.
The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.
Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.
Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.
Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.
When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.
Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.
It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.
A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.
The word “shaft” covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.
When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.
Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.
齒輪和軸的介紹
摘 要:在傳統(tǒng)機械和現(xiàn)代機械中齒輪和軸的重要地位是不可動搖的。齒輪和軸主要安裝在主軸箱來傳遞力的方向。通過加工制造它們可以分為許多的型號,分別用于許多的場合。所以我們對齒輪和軸的了解和認識必須是多層次多方位的。
關鍵詞:齒輪;軸;機床
在直齒圓柱齒輪的受力分析中,是假定各力作用在單一平面的。我們將研究作用力具有三維坐標的齒輪。因此,在斜齒輪的情況下,其齒向是不平行于回轉軸線的。而在錐齒輪的情況中各回轉軸線互相不平行。像我們要討論的那樣,尚有其他道理需要學習,掌握。
斜齒輪用于傳遞平行軸之間的運動。傾斜角度每個齒輪都一樣,但一個必須右旋斜齒,而另一個必須是左旋斜齒。齒的形狀是一濺開線螺旋面。如果一張被剪成平行四邊形(矩形)的紙張包圍在齒輪圓柱體上,紙上印出齒的角刃邊就變成斜線。如果我展開這張紙,在血角刃邊上的每一個點就發(fā)生一漸開線曲線。
直齒圓柱齒輪輪齒的初始接觸處是跨過整個齒面而伸展開來的線。斜齒輪輪齒的初始接觸是一點,當齒進入更多的嚙合時,它就變成線。在直齒圓柱齒輪中,接觸是平行于回轉軸線的。在斜齒輪中,該先是跨過齒面的對角線。它是齒輪逐漸進行嚙合并平穩(wěn)的從一個齒到另一個齒傳遞運動,那樣就使斜齒輪具有高速重載下平穩(wěn)傳遞運動的能力。斜齒輪使軸的軸承承受徑向和軸向力。當軸向推力變的大了或由于別的原因而產(chǎn)生某些影響時,那就可以使用人字齒輪。雙斜齒輪(人字齒輪)是與反向的并排地裝在同一軸上的兩個斜齒輪等效。他們產(chǎn)生相反的軸向推力作用,這樣就消除了軸向推力。當兩個或更多個單向齒斜齒輪被在同一軸上時,齒輪的齒向應作選擇,以便產(chǎn)生最小的軸向推力。
交錯軸斜齒輪或螺旋齒輪,他們是軸中心線既不相交也不平行。交錯軸斜齒輪的齒彼此之間發(fā)生點接觸,它隨著齒輪的磨合而變成線接觸。因此他們只能傳遞小的載荷和主要用于儀器設備中,而且肯定不能推薦在動力傳動中使用。交錯軸斜齒輪與斜齒輪之間在被安裝后互相捏合之前是沒有任何區(qū)別的。它們是以同樣的方法進行制造。一對相嚙合的交錯軸斜齒輪通常具有同樣的齒向,即左旋主動齒輪跟右旋從動齒輪相嚙合。在交錯軸斜齒設計中,當該齒的斜角相等時所產(chǎn)生滑移速度最小。然而當該齒的斜角不相等時,如果兩個齒輪具有相同齒向的話,大斜角齒輪應用作主動齒輪。
蝸輪與交錯軸斜齒輪相似。小齒輪即蝸桿具有較小的齒數(shù),通常是一到四齒,由于它們完全纏繞在節(jié)圓柱上,因此它們被稱為螺紋齒。與其相配的齒輪叫做蝸輪,蝸輪不是真正的斜齒輪。蝸桿和蝸輪通常是用于向垂直相交軸之間的傳動提供大的角速度減速比。蝸輪不是斜齒輪,因為其齒頂面做成中凹形狀以適配蝸桿曲率,目的是要形成線接觸而不是點接觸。然而蝸桿蝸輪傳動機構中存在齒間有較大滑移速度的缺點,正像交錯軸斜齒輪那樣。
蝸桿蝸輪機構有單包圍和雙包圍機構。單包圍機構就是蝸輪包裹著蝸桿的一種機構。當然,如果每個構件各自局部地包圍著對方的蝸輪機構就是雙包圍蝸輪蝸桿機構。著兩者之間的重要區(qū)別是,在雙包圍蝸輪組的輪齒間有面接觸,而在單包圍的蝸輪組的輪齒間有線接觸。一個裝置中的蝸桿和蝸輪正像交錯軸斜齒輪那樣具有相同的齒向,但是其斜齒齒角的角度是極不相同的。蝸桿上的齒斜角度通常很大,而蝸輪上的則極小,因此習慣常規(guī)定蝸桿的導角,那就是蝸桿齒斜角的余角;也規(guī)定了蝸輪上的齒斜角,該兩角之和就等于90度的軸線交角。
當齒輪要用來傳遞相交軸之間的運動時,就需要某種形式的錐齒輪。雖然錐齒輪通常制造成能構成90度軸交角,但它們也可產(chǎn)生任何角度的軸交角。輪齒可以鑄出,銑制或滾切加工。僅就滾齒而言就可達一級精度。在典型的錐齒輪安裝中,其中一個錐齒輪常常裝于支承的外側。這意味著軸的撓曲情況更加明顯而使在輪齒接觸上具有更大的影響。
另外一個難題,發(fā)生在難于預示錐齒輪輪齒上的應力,實際上是由于齒輪被加工成錐狀造成的。
直齒錐齒輪易于設計且制造簡單,如果他們安裝的精密而確定,在運轉中會產(chǎn)生良好效果。然而在直齒圓柱齒輪情況下,在節(jié)線速度較高時,他們將發(fā)出噪音。在這些情況下,螺旋錐齒輪比直齒輪能產(chǎn)生平穩(wěn)的多的嚙合作用,因此碰到高速運轉的場合那是很有用的。當在汽車的各種不同用途中,有一個帶偏心軸的類似錐齒輪的機構,那是常常所希望的。這樣的齒輪機構叫做準雙曲面齒輪機構,因為它們的節(jié)面是雙曲回轉面。這種齒輪之間的輪齒作用是沿著一根直線上產(chǎn)生滾動與滑動相結合的運動并和蝸輪蝸桿的輪齒作用有著更多的共同之處。
軸是一種轉動或靜止的桿件。通常有圓形橫截面。在軸上安裝像齒輪,皮帶輪,飛輪,曲柄,鏈輪和其他動力傳遞零件。軸能夠承受彎曲,拉伸,壓縮或扭轉載荷,這些力相結合時,人們期望找到靜強度和疲勞強度作為設計的重要依據(jù)。因為單根軸可以承受靜壓力,變應力和交變應力,所有的應力作用都是同時發(fā)生的。
“軸”這個詞包含著多種含義,例如心軸和主軸。心軸也是軸,既可以旋轉也可以靜止的軸,但不承受扭轉載荷。短的轉動軸常常被稱為主軸。
當軸的彎曲或扭轉變形必需被限制于很小的范圍內時,其尺寸應根據(jù)變形來確定,然后進行應力分析。因此,如若軸要做得有足夠的剛度以致?lián)锨惶?,那么合應力符合安全要求那是完全可能的。但決不意味著設計者要保證;它們是安全的,軸幾乎總是要進行計算的,知道它們是處在可以接受的允許的極限以內。因之,設計者無論何時,動力傳遞零件,如齒輪或皮帶輪都應該設置在靠近支持軸承附近。這就減低了彎矩,因而減小變形和彎曲應力。
雖然來自M.H.G方法在設計軸中難于應用,但它可能用來準確預示實際失效。這樣,它是一個檢驗已經(jīng)設計好了的軸的或者發(fā)現(xiàn)具體軸在運轉中發(fā)生損壞原因的好方法。進而有著大量的關于設計的問題,其中由于別的考慮例如剛度考慮,尺寸已得到較好的限制。
設計者去查找關于圓角尺寸、熱處理、表面光潔度和是否要進行噴丸處理等資料,那真正的唯一的需要是實現(xiàn)所要求的壽命和可靠性。
4
畢業(yè)設計(論文)開題報告
學生姓名
系部
機電工程學院
專業(yè)、班級
指導教師姓名
職稱
教授
從事
專業(yè)
機械工程
是否外聘
□是■否
題目名稱
X6130臥式萬能升降臺銑床總體布局及主軸箱設計
一、課題研究現(xiàn)狀,選題的目的、依據(jù)和意義
1.課題研究現(xiàn)狀
最早的銑床是美國人惠特尼于1818年創(chuàng)制的臥式銑床;為了銑削麻花鉆頭的螺旋槽,美國人布朗于1862年創(chuàng)制了第一臺萬能銑床,這是升降臺銑床的雛形;1884年前后又出現(xiàn)了龍門銑床;二十世紀20年代出現(xiàn)了半自動銑床,工作臺利用擋塊可完成“進給-快速”或“快速-進給”的自動轉換。
1950年以后,銑床在控制系統(tǒng)方面發(fā)展很快,數(shù)字控制的應用大大提高了銑床的自動化程度。尤其是70年代以后,微處理機的數(shù)字控制系統(tǒng)和自動換刀系統(tǒng)在銑床上得到應用,擴大了銑床的加工范圍,提高了加工精度與效率。
2.選題的目的和意義
銑床(milling machine)系指主要用銑刀在工件上加工各種表面的機床。通常銑
刀旋轉運動為主運動,工件(和)銑刀的移動為進給運動。它可以加工平面、垂直面、斜面、各種溝槽或成型面,如果配一些附件(如分度頭)也可以加工螺旋槽,凸輪、成型面等。
臥式萬能升降臺 有縱、橫、垂三個進給方向,機床操縱方便,靈活可靠,機床精度保持性好,符合國際標準。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較復雜的型面,效率較刨床高,在機械制造和修理部門得到廣泛應用,適用于各類機械加工部門。
通過機床運動機械變速傳動系統(tǒng)的結構設計,使學生在擬定傳動和變速的結構的結構方案過程中,得到設計構思,方案分析,結構工藝性,機械制圖,零件計算,編寫技術文件和查閱技術資料等方面的綜合訓練,樹立正確的設計思想,掌握基本的設計方法,并培養(yǎng)學生具有初步的結構分析,結構設計和計算能力
二、設計(論文)的基本內容,擬解決的主要問題
1.基本內容:
(1)X6130主軸變速及傳動機構設計;
(2)X6130外觀總體布局設計;
(3)主軸、齒輪及零件部件設計和驗算。
2.擬解決的主要問題
克服傳統(tǒng)銑床進度保持低、難加工復雜平面等缺陷。
三、技術路線
1.通過網(wǎng)絡和圖書館多方查閱相關文獻資料,了解機床的專業(yè)知識;
2.對比現(xiàn)有銑床,根據(jù)現(xiàn)有知識確定X6130的設計方案;
3.根據(jù)技術手冊,確定銑床的技術參數(shù),開始方案設計;
4.完成總體布局及主軸箱設計,編寫說明書。
四、進度安排
3月01日~3月07日 查閱資料;
3月08日~3月14日 消化資料;
3月15日~3月21日 撰寫開題報告;
3月22日~4月11日 方案設計、寫說明書草稿;
4月12日~4月25日 畫草圖、寫說明書草稿;
4月26日~5月23日 畫CAD圖、整理說明書;
5月24日~5月30日 打印說明書
5月31日~6月20日 準備答辯。
五、參考文獻
[1] 王瑞新.在銑床上做多面加工[J].現(xiàn)代制造,1997:36-42.
[2] 閃瑞昌. 國外機床噪聲工作綜述[J].制造技術與機床,1980:12-14.
[3] 王京城. 齒輪行業(yè)潤滑[J].石油商技, 2005:32-38.
[4]許吉慶,譚穎.銑床的數(shù)控改裝與設計[J].機械設計,1997:67-72.
[5]陳湘,羅華陽.X6130銑床的故障分析與模擬[J].機電產(chǎn)品開發(fā)與創(chuàng)新,2009:22-29.
[6]李明,栗全慶.升降臺銑床電機的選擇計算[J].煤礦機械,2009:44-49.
[7]王立華,羅建平,劉泓濱,黃亞宇.銑床關鍵結合面動態(tài)特性研究[J]. 振動與沖擊,2008:20-32
六、備注
指導教師意見:
簽字: 年 月 日