高考數(shù)學(xué)一輪復(fù)習(xí) 第二章專(zhuān)題研究 函數(shù)模型及其應(yīng)用課件 理.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第二章專(zhuān)題研究 函數(shù)模型及其應(yīng)用課件 理.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第二章專(zhuān)題研究 函數(shù)模型及其應(yīng)用課件 理.ppt(34頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
,,專(zhuān)題研究 函數(shù)模型及其應(yīng)用,題型一 二次函數(shù)模型,(1)求年產(chǎn)量為多少?lài)崟r(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本; (2)若每噸產(chǎn)品平均出廠價(jià)為40萬(wàn)元,則當(dāng)年產(chǎn)量為多少?lài)崟r(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?,【答案】 (1)年產(chǎn)量為200噸時(shí),每噸平均成本最低,最低為32萬(wàn)元 (2)年產(chǎn)量為210噸時(shí),可獲得最大利潤(rùn)1 660萬(wàn)元,探究1 二次函數(shù)是常用的函數(shù)模型,建立二次函數(shù)模型可以求出函數(shù)的值域或最值.解決實(shí)際中的優(yōu)化問(wèn)題時(shí),一定要分析自變量的取值范圍.利用配方法求最值時(shí),一定要注意對(duì)稱(chēng)軸與給定區(qū)間的關(guān)系:若對(duì)稱(chēng)軸在給定的區(qū)間內(nèi),可在對(duì)稱(chēng)軸處取最值,在離對(duì)稱(chēng)軸較遠(yuǎn)的端點(diǎn)處取另一最值;若對(duì)稱(chēng)軸不在給定的區(qū)間內(nèi),最值都在區(qū)間的端點(diǎn)處取得.,某企業(yè)為打入國(guó)際市場(chǎng),決定從A,B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表所示:(單位:萬(wàn)美元),思考題1,其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)m∈[6,8].另外,年銷(xiāo)售x件B產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去. (1)寫(xiě)出該廠分別投資生產(chǎn)A,B兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系,并指明其定義域; (2)如何投資最合理(可獲得最大年利潤(rùn))?請(qǐng)你作出規(guī)劃.,【解析】 (1)由年銷(xiāo)售量為x件,按利潤(rùn)的計(jì)算公式,得生產(chǎn)A,B兩種產(chǎn)品的年利潤(rùn)y1,y2分別為 y1=10x-(20+mx)=(10-m)x-20(x∈N,0≤x≤200), y2=18x-(40+8x)-0.05x2=-0.05x2+10x-40(x∈N,0≤x≤120). (2)因?yàn)?≤m≤8, 所以10-m0,函數(shù)y1=(10-m)x-20在[0,200]上是增函數(shù). 所以當(dāng)x=200時(shí),生產(chǎn)A產(chǎn)品有最大利潤(rùn)為(10-m)×200-20=1 980-200m(萬(wàn)美元).,【答案】 (1)y1=(10-m)x-20(x∈N,0≤x≤200) y2=-0.05x2+10x-40(x∈N,0≤x≤120) (2)當(dāng)6≤m7.6時(shí),可投資生產(chǎn)A產(chǎn)品200件; 當(dāng)m=7.6時(shí),生產(chǎn)A產(chǎn)品與生產(chǎn)B產(chǎn)品均可; 當(dāng)7.6m≤8時(shí),可投資生產(chǎn)B產(chǎn)品100件,例2 某公司研制出了一種新產(chǎn)品,試制了一批樣品分別在國(guó)內(nèi)和國(guó)外上市銷(xiāo)售,并且價(jià)格根據(jù)銷(xiāo)售情況不斷進(jìn)行調(diào)整,結(jié)果40天內(nèi)全部銷(xiāo)完.公司對(duì)銷(xiāo)售及銷(xiāo)售利潤(rùn)進(jìn)行了調(diào)研,結(jié)果如圖所示,其中圖①(一條折線(xiàn))、圖②(一條拋物線(xiàn)段)分別是國(guó)外和國(guó)內(nèi)市場(chǎng)的日銷(xiāo)售量與上市時(shí)間的關(guān)系,圖③是每件樣品的銷(xiāo)售利潤(rùn)與上市時(shí)間的關(guān)系.,題型二 分段函數(shù)模型,(1)分別寫(xiě)出國(guó)外市場(chǎng)的日銷(xiāo)售量f(t)與上市時(shí)間t的關(guān)系及國(guó)內(nèi)市場(chǎng)的日銷(xiāo)售量g(t)與上市時(shí)間t的關(guān)系; (2)國(guó)外和國(guó)內(nèi)的日銷(xiāo)售利潤(rùn)之和有沒(méi)有可能恰好等于6 300萬(wàn)元?若有,請(qǐng)說(shuō)明是上市后的第幾天;若沒(méi)有,請(qǐng)說(shuō)明理由.,,探究2 (1)分段函數(shù)主要是每一段自變量變化所遵循的規(guī)律不同,可以先將其當(dāng)作幾個(gè)問(wèn)題,將各段的變化規(guī)律分別找出來(lái),再將其合到一起,要注意各段自變量的范圍,特別是端點(diǎn)值. (2)構(gòu)造分段函數(shù)時(shí),要力求準(zhǔn)確、簡(jiǎn)潔,做到分段合理不重不漏.,某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為1.80元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸3.00元.某月甲、乙兩戶(hù)共交水費(fèi)y元,已知甲、乙兩戶(hù)該月用水量分別為5x,3x(噸). (1)求y關(guān)于x的函數(shù); (2)若甲、乙兩戶(hù)該月共交水費(fèi)26.4元,分別求出甲、乙兩戶(hù)該月的用水量和水費(fèi). 【解析】 (1)當(dāng)甲的用水量不超過(guò)4噸時(shí),即5x≤4,乙的用水量也不超過(guò)4噸,y=1.8(5x+3x)=14.4x;,思考題2,例3 某城市現(xiàn)有人口總數(shù)為100萬(wàn)人,如果年自然增長(zhǎng)率為1.2%,試解答下面的問(wèn)題: (1)寫(xiě)出該城市人口總數(shù)y(萬(wàn)人)與年數(shù)x(年)的函數(shù)關(guān)系式; (2)計(jì)算10年以后該城市人口總數(shù)(精確到0.1萬(wàn)人); (3)計(jì)算大約多少年以后該城市人口將達(dá)到120萬(wàn)人(精確到1年).(1.01210=1.127,1.01215=1.196,1.01216=1.210),題型三 指數(shù)函數(shù)的模型,【解析】,(1)1年后該城市人口總數(shù)為y=100+100×1.2%=100×(1+1.2%), 2年后該城市人口總數(shù)為y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2, 3年后該城市人口總數(shù)為y=100×(1+1.2%)2+100×(1+1.2%)2×1.2% =100×(1+1.2%)2×(1+1.2%) =100×(1+1.2%)3. … x年后該城市人口總數(shù)為 y=100×(1+1.2%)x(x∈N*).,(2)10年后人口總數(shù)為 100×(1+1.2%)10≈112.7(萬(wàn)人). (3)設(shè)x年后該城市人口將達(dá)到120萬(wàn)人, 即100×(1+1.2%)x=120,x=log1.0121.20≈16(年). 因此,大約16年以后該城市人口將達(dá)到120萬(wàn)人. 【答案】 (1)y=100×(1+1.2%)x(x∈N*) (2)112.7萬(wàn)人 (3)16,探究3 此類(lèi)增長(zhǎng)率問(wèn)題,在實(shí)際問(wèn)題中??梢杂弥笖?shù)函數(shù)模型y=N(1+p)x(其中N是基礎(chǔ)數(shù),p為增長(zhǎng)率,x為時(shí)間)和冪函數(shù)模型y=a(1+x)n(其中a為基礎(chǔ)數(shù),x為增長(zhǎng)率,n為時(shí)間)的形式.解題時(shí),往往用到對(duì)數(shù)運(yùn)算,要注意與已知表格中給定的值對(duì)應(yīng)求解.,2009年12月20日是世界人口日: (1)世界人口在過(guò)去40年內(nèi)翻了一番,問(wèn)每年人口平均增長(zhǎng)率是多少? (2)我國(guó)人口在2009年底達(dá)到12.48億,若將人口平均增長(zhǎng)率控制在1%以?xún)?nèi),則我國(guó)人口在2019年底至多有多少億? 以下數(shù)據(jù)供計(jì)算時(shí)使用:,思考題3,【思路】 增長(zhǎng)率問(wèn)題是指數(shù)函數(shù)與冪函數(shù)問(wèn)題,利用已知條件,列出函數(shù)模型.,(2)依題意,y≤12.48(1+1%)10, 得lgy≤lg12.48+10×lg1.01=1.139 2. ∴y≤13.78,故人口至多有13.78億. 【答案】 (1)每年人口平均增長(zhǎng)率為1.7% (2)2019年人口至多有13.78億.,解答應(yīng)用問(wèn)題的程序概括為“四步八字”,即 ①審題:弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,初步選擇模型; ②建模:把自然語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,將文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言,利用數(shù)學(xué)知識(shí),建立相應(yīng)的數(shù)學(xué)模型; ③求模:求解數(shù)學(xué)模型,得出數(shù)學(xué)結(jié)論; ④還原:將數(shù)學(xué)結(jié)論還原為實(shí)際問(wèn)題的意義.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第二章專(zhuān)題研究 函數(shù)模型及其應(yīng)用課件 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第二 專(zhuān)題研究 函數(shù) 模型 及其 應(yīng)用 課件
鏈接地址:http://weibangfood.com.cn/p-2194421.html