2019-2020年高中數(shù)學(xué)《幾何概型》教案2新人教A版必修3.doc
《2019-2020年高中數(shù)學(xué)《幾何概型》教案2新人教A版必修3.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《幾何概型》教案2新人教A版必修3.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《幾何概型》教案2新人教A版必修3 一、教學(xué)目標(biāo): 1、 知識與技能:(1)正確理解幾何概型的概念; (2)掌握幾何概型的概率公式: P(A)=; (3)會根據(jù)古典概型與幾何概型的區(qū)別與聯(lián)系來判別某種概型是古典概型還是幾何概型; 2、 過程與方法:(1)發(fā)現(xiàn)法教學(xué),通過師生共同探究,體會數(shù)學(xué)知識的形成,學(xué)會應(yīng)用數(shù)學(xué)知識來解決問題,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力. 3、 情感態(tài)度與價值觀:本節(jié)課的主要特點是隨機(jī)試驗多,學(xué)習(xí)時養(yǎng)成勤學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)習(xí)慣。 二、重點與難點: 幾何概型的概念、公式及應(yīng)用; 三、學(xué)法與教學(xué)用具:1、通過對本節(jié)知識的探究與學(xué)習(xí),感知用圖形解決概率問題的方法,掌握數(shù)學(xué)思想與邏輯推理的數(shù)學(xué)方法;2、教學(xué)用具:投燈片,計算機(jī)及多媒體教學(xué). 四、教學(xué)設(shè)想: 1、創(chuàng)設(shè)情境:在概率論發(fā)展的早期,人們就已經(jīng)注意到只考慮那種僅有有限個等可能結(jié)果的隨機(jī)試驗是不夠的,還必須考慮有無限多個試驗結(jié)果的情況。例如一個人到單位的時間可能是8:00至9:00之間的任何一個時刻;往一個方格中投一個石子,石子可能落在方格中的任何一點……這些試驗可能出現(xiàn)的結(jié)果都是無限多個。 2、基本概念:(1)幾何概率模型:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型; (2)幾何概型的概率公式: P(A)=; (3)幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等. 3、 例題分析: 課本例題略 例1 判下列試驗中事件A發(fā)生的概度是古典概型, 還是幾何概型。 (1)拋擲兩顆骰子,求出現(xiàn)兩個“4點”的概率; (2)如課本圖3.3-1中的(2)所示,圖中有一個轉(zhuǎn)盤,甲乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向B區(qū)域時,甲獲勝,否則乙獲勝,求甲獲勝的概率。 分析:本題考查的幾何概型與古典概型的特點,古典概型具有有限性和等可能性。而幾何概型則是在試驗中出現(xiàn)無限多個結(jié)果,且與事件的區(qū)域長度有關(guān)。 解:(1)拋擲兩顆骰子,出現(xiàn)的可能結(jié)果有66=36種,且它們都是等可能的,因此屬于古典概型; (2)游戲中指針指向B區(qū)域時有無限多個結(jié)果,而且不難發(fā)現(xiàn)“指針落在陰影部分”,概率可以用陰影部分的面積與總面積的比來衡量,即與區(qū)域長度有關(guān),因此屬于幾何概型. 例2 某人欲從某車站乘車出差,已知該站發(fā)往各站的客車均每小時一班,求此人等車時間不多于10分鐘的概率. 分析:假設(shè)他在0~60分鐘之間任何一個時刻到車站等車是等可能的,但在0到60分鐘之間有無窮多個時刻,不能用古典概型公式計算隨機(jī)事件發(fā)生的概率.可以通過幾何概型的求概率公式得到事件發(fā)生的概率.因為客車每小時一班,他在0到60分鐘之間任何一個時刻到站等車是等可能的,所以他在哪個時間段到站等車的概率只與該時間段的長度有關(guān),而與該時間段的位置無關(guān),這符合幾何概型的條件. 解:設(shè)A={等待的時間不多于10分鐘},我們所關(guān)心的事件A恰好是到站等車的時刻位于[50,60]這一時間段內(nèi),因此由幾何概型的概率公式,得P(A)= =,即此人等車時間不多于10分鐘的概率為. 小結(jié):在本例中,到站等車的時刻X是隨機(jī)的,可以是0到60之間的任何一刻,并且是等可能的,我們稱X服從[0,60]上的均勻分布,X為[0,60]上的均勻隨機(jī)數(shù). 練習(xí):1.已知地鐵列車每10min一班,在車站停1min,求乘客到達(dá)站臺立即乘上車的概率。 2.兩根相距6m的木桿上系一根繩子,并在繩子上掛一盞燈,求燈與兩端距離都大于2m的概率. 解:1.由幾何概型知,所求事件A的概率為P(A)= ; 2.記“燈與兩端距離都大于2m”為事件A,則P(A)= =. 例3 在1萬平方千米的海域中有40平方千米的大陸架儲藏著石油,假設(shè)在海域中任意一點鉆探,鉆到油層面的概率是多少? 分析:石油在1萬平方千米的海域大陸架的分布可以看作是隨機(jī)的而40平方千米可看作構(gòu)成事件的區(qū)域面積,有幾何概型公式可以求得概率。 解:記“鉆到油層面”為事件A,則P(A)= ==0.004. 答:鉆到油層面的概率是0.004. 例4 在1升高產(chǎn)小麥種子中混入了一種帶麥誘病的種子,從中隨機(jī)取出10毫升,則取出的種子中含有麥誘病的種子的概率是多少? 分析:病種子在這1升中的分布可以看作是隨機(jī)的,取得的10毫克種子可視作構(gòu)成事件的區(qū)域,1升種子可視作試驗的所有結(jié)果構(gòu)成的區(qū)域,可用“體積比”公式計算其概率。 解:取出10毫升種子,其中“含有病種子”這一事件記為A,則 P(A)= ==0.01. 答:取出的種子中含有麥誘病的種子的概率是0.01. 4、課堂小結(jié):1、幾何概型是區(qū)別于古典概型的又一概率模型,使用幾何概型的概率計算公式時,一定要注意其適用條件:每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度成比例; 5、課堂練習(xí): 1.在500ml的水中有一個草履蟲,現(xiàn)從中隨機(jī)取出2ml水樣放到顯微鏡下觀察,則發(fā)現(xiàn)草履蟲的概率是( ) A.0.5 B.0.4 C.0.004 D.不能確定 2.平面上畫了一些彼此相距2a的平行線,把一枚半徑r- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 幾何概型 2019 2020 年高 數(shù)學(xué) 幾何 教案 新人 必修
鏈接地址:http://weibangfood.com.cn/p-2631246.html