2019-2020年高一數(shù)學上 第二章 函數(shù):函數(shù)2.2.1優(yōu)秀教案.doc
《2019-2020年高一數(shù)學上 第二章 函數(shù):函數(shù)2.2.1優(yōu)秀教案.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高一數(shù)學上 第二章 函數(shù):函數(shù)2.2.1優(yōu)秀教案.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高一數(shù)學上 第二章 函數(shù):函數(shù)2.2.1優(yōu)秀教案 [教學目的] 使學生進一步鞏固函數(shù)的概念,能根據(jù)函數(shù)所具有的某些性質(zhì)或它所滿足的一些關系,求出它的解析式,并掌握解析式的一些形式的變換. [重點難點] 重點、難點:函數(shù)解析式的求法. [教學過程] 一、復習引入 ⒈用映射刻劃的函數(shù)的定義是什么?函數(shù)符號的含義是什么?函數(shù)的表示方法常用的有哪些? 答:函數(shù)是兩個非空數(shù)集A到B的特殊映射f:x→y=f(x),xR,yCB;定義域A、值域C和定義域到值域的對應法則f稱為函數(shù)的三要素;符號y=f(x)表示y是x的函數(shù),不是f與x的乘積;函數(shù)的表示方法常用的有解析法、列表法和圖象法,而中學階段所研究的函數(shù)主要是能用解析式表示的函數(shù).. ⒉引入:我們已經(jīng)了解了函數(shù)的概念和表示方法.在此基礎上,今天我們來學習確定函數(shù)解析式的幾種常見方法. 二、學習、講解新課 我們知道,把兩個變量的函數(shù)關系用一個等式表示,這個等式就叫做函數(shù)的解析表達式,簡稱解析式.下面我們通過例題來說明求函數(shù)解析式的幾種常用方法 例1 ⑴已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x); ⑵已知f(+1)=x+2,求f(x+1); ⑶已知f(x)滿足2f(x)+f(1/x)=3x,求f(x); ⑷設二次函數(shù)f(x)滿足f(x+2)=f(2-x)且f(x)=0的兩實根平方和為10,圖象過點(0,3),求f(x)的解析式. 解:⑴設f(x)=ax+b,則3f(x+1)-2f(x-1)=3[a(x+1)+b]- 2[a(x-1)+b]=ax+(5a+b)=2x+17,比較系數(shù)得a=2且5a+b=17, ∴a=2,b=7,∴f(x)=2x+7. ⑵設u=+11,則=u-1,x=(u-1)2,于是f(u)=(u-1)2+2(u-1) =u2-1(u1),即f(u)=u2-1(u1), ∴f(x+1)=(x+1)2-1=x2+2x(x+11), 即f(x+1)=x2+2x(x0). ⑶∵已知2f(x)+f(1/x)=3x ---①,將①中x換成1/x得2f(1/x) +f(x)=3/x ---②,①2-②得3f(x)=6x-3/x,∴f(x)=2x-1/x. ⑷設f(x)的解析式是f(x)=ax2+bx+c(a0), ∵圖象過點(0,3),∴有f(0)=c=3,故c=3;又∵f(x)滿足f(x+2)=f(2-x)且f(x)=0的兩實根平方和為10,∴得對稱軸x=2且x12+x22=(x1+x2)2-2x1x2=10,即(-b/2a)=2且(b2/a2)-(6/a)=10,∴a=1,b=-4,∴f(x)=x2-4x+3. 說明:求函數(shù)解析式常用的方法有:待定系數(shù)法(如⑴⑷)、換元法(如⑵)、構造方程法(如⑶)等. 例2 高為h,底面半徑為r的圓柱形容器內(nèi),以單位時間內(nèi)體積為a的速度充水,試求出水面高y與時間t的函數(shù)關系式,并求其定義域.(提示:圓柱的體積=底面積高) 解:由題意有at=r2y,即y=(a/r2)t,∵0yh,即0(a/r2)h, ∴0tr2h/a,即定義域是[0,r2h/a]. 說明:這是函數(shù)知識在實際問題中的應用,其定義域是由實際問題所決定的. 練習:⑴若f(1/x)=1/(1+x),則f(x)= ; ⑵已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x,則f(x)= ; ⑶已知g(x)=1-2x,f[g(x)]=(1-x2)/x2(x0),則f(1/2)= ; ⑷將長為a的鐵絲折成矩形,面積y關于邊長x的函數(shù)關系是 ,其定義域是 ; ⑸已知f(x)=,若f(x)=10,則x= ; ⑹已知函數(shù)f(x)滿足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,則f(36)= . 解:⑴令u=1/x,則x=1/u,f(u)=u/(1+u),∴f(x)=x/(1+x); ⑵設f(x)=ax2+bx+c(a0),∵f(0)=1,∴c=1,又f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-ax2-ba-1=2x,即2ax+a+b=2x,比較系數(shù)得2a=2且a+b=0,∴a=1,b=-1,∴f(x)=x2-x+1. ⑶由g(x)=1-2x=1/2,得x=1/4,∴f(1/2)=[1-(1/4)2]/(1/4)2=15. ⑷設矩形的長為x,則寬為(a-2x)/2,∴y=x[(a-2x)/2]=ax/2-x2,定義域是(0,a/2). ⑸由已知-2x<0,∴f(x)=x2+1=10,即x=3,又x0,∴x=-3. ⑹f(36)=f(66)=f(6)+f(6)=2f(6)=2f(23)=2[f(2)+f(3)] =2(p+q). 三、小 結 ⒈解析式表示函數(shù)與自變量之間的一種對應關系,是函數(shù)與自變量之間建立聯(lián)系的橋梁; ⒉解析式只表示一種對應關系,與所取的字母無關,如y=2x-1與u=2t-1是同一個函數(shù); ⒊求函數(shù)解析式的方法一般有待定系數(shù)法和換元法,若已知函數(shù)的構造模式,可用待定系數(shù)法;若已知復合函數(shù)f[f(x)]的表達式來求f(x),常用換元法;當已知表達式較簡單時,甚至可直接用湊合法求解. ⒋用賦值法(特殊值法)求函數(shù)式中的參數(shù),是一種比較常用的方法. ⒌根據(jù)實際問題求函數(shù)的表達式,是應用函數(shù)知識解決實際問題的基礎,在設定或選定自變量后去尋找等量關系,以求得表達式,要注意函數(shù)定義域應由實際問題確定. 四、布置作業(yè) (一)復習:課本和課堂上的有關內(nèi)容. (二)書面:⒈填空: ⑴若f(x)=2x+1,則f[f(2)]= ;f(-x)= ;f[f(x)]= . ⑵若f(x+1)=x2-2x+5,則f(x)= . ⑶若f(x)=2x+3,g(x+2)=f(x),則g(x)= . ⑷若3f(x)+2f(1/x)=4x,則f(x)= . ⑸若f(x)=x2-mx+n,f(n)=m,f(1)=-1,則f(-5)= . ⒉設函數(shù)f(x)=x2-4x-4的定義域為[t-2,t-1],對任意t∈R,求函數(shù)f(x)的最小值(t)的解析式,并畫出圖象.(練習冊P26B組第2題)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高一數(shù)學上 第二章 函數(shù):函數(shù)2.2.1優(yōu)秀教案 2019 2020 年高 數(shù)學 第二 函數(shù) 2.2 優(yōu)秀 教案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://weibangfood.com.cn/p-2654594.html