2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第06講 函數(shù)與方程教案 新人教版.doc
2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第06講 函數(shù)與方程教案 新人教版
一.課標(biāo)要求:
1.結(jié)合二次函數(shù)的圖像,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系;
2.根據(jù)具體函數(shù)的圖像,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
二.命題走向
函數(shù)與方程的理論是高中新課標(biāo)教材中新增的知識點(diǎn),特別是“二分法”求方程的近似解也一定會是高考的考點(diǎn)。從近幾年高考的形勢來看,十分注重對三個(gè)“二次”(即一元二次函數(shù)、一元二次方程、一元二次不等式)的考察力度,同時(shí)也研究了它的許多重要的結(jié)論,并付諸應(yīng)用。高考試題中有近一半的試題與這三個(gè)“二次”問題有關(guān)。
預(yù)計(jì)xx年高考對本講的要求是:以二分法為重點(diǎn)、以二次函數(shù)為載體、以考察函數(shù)與方程的關(guān)系為目標(biāo)來考察學(xué)生的能力。
(1)題型可為選擇、填空和解答;
(2)高考試題中可能出現(xiàn)復(fù)合了函數(shù)性質(zhì)與函數(shù)零點(diǎn)的綜合題,同時(shí)考察函數(shù)方程的思想。
三.要點(diǎn)精講
1.方程的根與函數(shù)的零點(diǎn)
(1)函數(shù)零點(diǎn)
概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。
二次函數(shù)的零點(diǎn):
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);
3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。
零點(diǎn)存在性定理:如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點(diǎn)。既存在,使得,這個(gè)也就是方程的根。
2.二分法
二分法及步驟:
對于在區(qū)間,上連續(xù)不斷,且滿足的函數(shù),通過不斷地把函數(shù)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.
給定精度,用二分法求函數(shù)的零點(diǎn)近似值的步驟如下:
(1)確定區(qū)間,,驗(yàn)證,給定精度;
(2)求區(qū)間,的中點(diǎn);
(3)計(jì)算:
①若=,則就是函數(shù)的零點(diǎn);
②若<,則令=(此時(shí)零點(diǎn));
③若<,則令=(此時(shí)零點(diǎn));
(4)判斷是否達(dá)到精度;
即若,則得到零點(diǎn)零點(diǎn)值(或);否則重復(fù)步驟2~4。
注:函數(shù)零點(diǎn)的性質(zhì)
從“數(shù)”的角度看:即是使的實(shí)數(shù);
從“形”的角度看:即是函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo);
若函數(shù)的圖象在處與軸相切,則零點(diǎn)通常稱為不變號零點(diǎn);
若函數(shù)的圖象在處與軸相交,則零點(diǎn)通常稱為變號零點(diǎn)。
注:用二分法求函數(shù)的變號零點(diǎn):二分法的條件表明用二分法求函數(shù)的近似零點(diǎn)都是指變號零點(diǎn)。
3.二次函數(shù)的基本性質(zhì)
(1)二次函數(shù)的三種表示法:y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n。
(2)當(dāng)a>0,f(x)在區(qū)間[p,q]上的最大值M,最小值m,令x0= (p+q)。
若-<p,則f(p)=m,f(q)=M;
若p≤-<x0,則f(-)=m,f(q)=M;
若x0≤-<q,則f(p)=M,f(-)=m;
若-≥q,則f(p)=M,f(q)=m。
(3)二次方程f(x)=ax2+bx+c=0的實(shí)根分布及條件。
①方程f(x)=0的兩根中一根比r大,另一根比r小af(r)<0;
②二次方程f(x)=0的兩根都大于r
③二次方程f(x)=0在區(qū)間(p,q)內(nèi)有兩根
④二次方程f(x)=0在區(qū)間(p,q)內(nèi)只有一根f(p)f(q)<0,或f(p)=0(檢驗(yàn))或f(q)=0(檢驗(yàn))檢驗(yàn)另一根若在(p,q)內(nèi)成立。
四.典例解析
題型1:方程的根與函數(shù)零點(diǎn)
例1.(1)方程lgx+x=3的解所在區(qū)間為( )
A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)
(2)設(shè)a為常數(shù),試討論方程的實(shí)根的個(gè)數(shù)。
解析:
(1)在同一平面直角坐標(biāo)系中,畫出函數(shù)y=lgx與y=-x+3的圖象(如圖)。它們的交點(diǎn)橫坐標(biāo),顯然在區(qū)間(1,3)內(nèi),由此可排除A,D至于選B還是選C,由于畫圖精確性的限制,單憑直觀就比較困難了。實(shí)際上這是要比較與2的大小。當(dāng)x=2時(shí),lgx=lg2,3-x=1。由于lg2<1,因此>2,從而判定∈(2,3),故本題應(yīng)選C。
(2)原方程等價(jià)于
即
構(gòu)造函數(shù)和,作出它們的圖像,易知平行于x軸的直線與拋物線的交點(diǎn)情況可得:
①當(dāng)或時(shí),原方程有一解;
②當(dāng)時(shí),原方程有兩解;
③當(dāng)或時(shí),原方程無解。
點(diǎn)評:圖象法求函數(shù)零點(diǎn),考查學(xué)生的數(shù)形結(jié)合思想。本題是通過構(gòu)造函數(shù)用數(shù)形結(jié)合法求方程lgx+x=3解所在的區(qū)間。數(shù)形結(jié)合,要在結(jié)合方面下功夫。不僅要通過圖象直觀估計(jì),而且還要計(jì)算的鄰近兩個(gè)函數(shù)值,通過比較其大小進(jìn)行判斷。
例2.(xx廣東19)設(shè)函數(shù)在上滿足,,且在閉區(qū)間[0,7]上,只有。
(Ⅰ)試判斷函數(shù)的奇偶性;
(Ⅱ)試求方程=0在閉區(qū)間[-xx,xx]上的根的個(gè)數(shù),并證明你的結(jié)論。
解析:由f(2-x)=f(2+x),f(7-x)=f(7+x)得函數(shù)的對稱軸為,
從而知函數(shù)不是奇函數(shù),
由
,從而知函數(shù)的周期為
又,故函數(shù)是非奇非偶函數(shù);
(II)由
(III) 又
故f(x)在[0,10]和[-10,0]上均有有兩個(gè)解,從而可知函數(shù)在[0,xx]上有402個(gè)解,在[-xx.0]上有400個(gè)解,所以函數(shù)在[-xx,xx]上有802個(gè)解。
點(diǎn)評:解題過程注重了函數(shù)的數(shù)字特征“”,即函數(shù)的零點(diǎn),也就是方程的根。
題型2:零點(diǎn)存在性定理
例3.(xx廣東21)設(shè)函數(shù),其中常數(shù)為整數(shù)。
(1)當(dāng)為何值時(shí),;
(2)定理:若函數(shù)在上連續(xù),且與異號,則至少存在一點(diǎn),使得
試用上述定理證明:當(dāng)整數(shù)時(shí),方程在內(nèi)有兩個(gè)實(shí)根。
解析:(1)函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且
當(dāng)x∈(-m,1-m)時(shí),f ’(x)<0,f(x)為減函數(shù),f(x)>f(1-m)
當(dāng)x∈(1-m, +∞)時(shí),f ’(x)>0,f(x)為增函數(shù),f(x)>f(1-m)
根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且
對x∈(-m, +∞)都有f(x)≥f(1-m)=1-m
故當(dāng)整數(shù)m≤1時(shí),f(x) ≥1-m≥0
(2)證明:由(I)知,當(dāng)整數(shù)m>1時(shí),f(1-m)=1-m<0,
函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)減函數(shù).
由所給定理知,存在唯一的
而當(dāng)整數(shù)m>1時(shí),
類似地,當(dāng)整數(shù)m>1時(shí),函數(shù)f(x)=x-ln(x+m),在 上為連續(xù)增函數(shù)且 f(1-m)與異號,由所給定理知,存在唯一的
故當(dāng)m>1時(shí),方程f(x)=0在內(nèi)有兩個(gè)實(shí)根。
點(diǎn)評:本題以信息給予的形式考察零點(diǎn)的存在性定理。解決該題的解題技巧主要在區(qū)間的放縮和不等式的應(yīng)用上。
例4.若函數(shù)在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是( )
A.若,不存在實(shí)數(shù)使得;
B.若,存在且只存在一個(gè)實(shí)數(shù)使得;
C.若,有可能存在實(shí)數(shù)使得;
D.若,有可能不存在實(shí)數(shù)使得;
解析:由零點(diǎn)存在性定理可知選項(xiàng)D不正確;對于選項(xiàng)B,可通過反例“在區(qū)間上滿足,但其存在三個(gè)解”推翻;同時(shí)選項(xiàng)A可通過反例“在區(qū)間上滿足,但其存在兩個(gè)解”;選項(xiàng)D正確,見實(shí)例“在區(qū)間上滿足,但其不存在實(shí)數(shù)解”。
點(diǎn)評:該問題詳細(xì)介紹了零點(diǎn)存在性定理的理論基礎(chǔ)。
題型3:二分法的概念
例5.關(guān)于“二分法”求方程的近似解,說法正確的是()
A.“二分法”求方程的近似解一定可將在[a,b]內(nèi)的所有零點(diǎn)得到;
B.“二分法”求方程的近似解有可能得不到在[a,b]內(nèi)的零點(diǎn);
C.應(yīng)用“二分法”求方程的近似解,在[a,b]內(nèi)有可能無零點(diǎn);
D.“二分法”求方程的近似解可能得到在[a,b]內(nèi)的精確解;
解析:如果函數(shù)在某區(qū)間滿足二分法題設(shè),且在區(qū)間內(nèi)存在兩個(gè)及以上的實(shí)根,二分法只可能求出其中的一個(gè),只要限定了近似解的范圍就可以得到函數(shù)的近似解,二分法的實(shí)施滿足零點(diǎn)存在性定理,在區(qū)間內(nèi)一定存在零點(diǎn),甚至有可能得到函數(shù)的精確零點(diǎn)。
點(diǎn)評:該題深入解析了二分法的思想方法。
例6.方程在[0,1]內(nèi)的近似解,用“二分法”計(jì)算到達(dá)到精確度要求。那么所取誤差限是( )
A.0.05 B.0.005 C.0.0005 D.0.00005
解析:由四舍五入的原則知道,當(dāng)時(shí),精度達(dá)到。此時(shí)差限是0.0005,選項(xiàng)為C。
點(diǎn)評:該題考察了差限的定義,以及它對精度的影響。
題型4:應(yīng)用“二分法”求函數(shù)的零點(diǎn)和方程的近似解
例7.借助計(jì)算器,用二分法求出在區(qū)間(1,2)內(nèi)的近似解(精確到0.1)。
解析:原方程即。
令,
用計(jì)算器做出如下對應(yīng)值表
x
-2
-1
0
1
2
f(x)
2.5820
3.0530
27918
1.0794
-4.6974
觀察上表,可知零點(diǎn)在(1,2)內(nèi)
取區(qū)間中點(diǎn)=1.5,且,從而,可知零點(diǎn)在(1,1.5)內(nèi);
再取區(qū)間中點(diǎn)=1.25,且,從而,可知零點(diǎn)在(1.25,1.5)內(nèi);
同理取區(qū)間中點(diǎn)=1.375,且,從而,可知零點(diǎn)在(1.25,1.375)內(nèi);
由于區(qū)間(1.25,1.375)內(nèi)任一值精確到0.1后都是1.3。故結(jié)果是1.3。
點(diǎn)評:該題系統(tǒng)的講解了二分法求方程近似解的過程,通過本題學(xué)會借助精度終止二分法的過程。
例8.借助計(jì)算器或計(jì)算機(jī)用二分法求方程的近似解(精確到)。
分析:本例除借助計(jì)算器或計(jì)算機(jī)確定方程解所在的大致區(qū)間和解的個(gè)數(shù)外,你是否還可以想到有什么方法確定方程的根的個(gè)數(shù)?
略解:圖象在閉區(qū)間,上連續(xù)的單調(diào)函數(shù),在,上至多有一個(gè)零點(diǎn)。
點(diǎn)評:①第一步確定零點(diǎn)所在的大致區(qū)間,,可利用函數(shù)性質(zhì),也可借助計(jì)算機(jī)或計(jì)算器,但盡量取端點(diǎn)為整數(shù)的區(qū)間,盡量縮短區(qū)間長度,通常可確定一個(gè)長度為1的區(qū)間;
②建議列表樣式如下:
零點(diǎn)所在區(qū)間
中點(diǎn)函數(shù)值
區(qū)間長度
[1,2]
>0
1
[1,1.5]
<0
0.5
[1.25,1.5]
<0
0.25
如此列表的優(yōu)勢:計(jì)算步數(shù)明確,區(qū)間長度小于精度時(shí),即為計(jì)算的最后一步。
題型5:一元二次方程的根與一元二次函數(shù)的零點(diǎn)
例9. 設(shè)二次函數(shù),方程的兩個(gè)根滿足. 當(dāng)時(shí),證明。
證明:由題意可知,
,
∴ ,
∴ 當(dāng)時(shí),。
又,
∴ ,
綜上可知,所給問題獲證。
點(diǎn)評:在已知方程兩根的情況下,根據(jù)函數(shù)與方程根的關(guān)系,可以寫出函數(shù)的表達(dá)式,從而得到函數(shù)的表達(dá)式。
例10.已知二次函數(shù),設(shè)方程的兩個(gè)實(shí)數(shù)根為和.
(1)如果,設(shè)函數(shù)的對稱軸為,求證:;
(2)如果,,求的取值范圍.
解析:設(shè),則的二根為和。
(1)由及,可得 ,即,
即
兩式相加得,所以,;
(2)由, 可得 。
又,所以同號。
∴ ,等價(jià)于
或,
即 或
解之得 或。
點(diǎn)評:條件實(shí)際上給出了的兩個(gè)實(shí)數(shù)根所在的區(qū)間,因此可以考慮利用上述圖像特征去等價(jià)轉(zhuǎn)化。
題型6:一元二次函數(shù)與一元二次不等式
例11.設(shè),若,,, 試證明:對于任意,有。
解析:∵ ,
∴ ,
∴ .
∴ 當(dāng)時(shí),
當(dāng)時(shí),
綜上,問題獲證。
點(diǎn)評:本題中,所給條件并不足以確定參數(shù)的值,但應(yīng)該注意到:所要求的結(jié)論不是確定值,而是與條件相對應(yīng)的“取值范圍”,因此,我們可以用來表示。
例12.已知二次函數(shù),當(dāng)時(shí),有,求證:當(dāng)時(shí),有
解析:由題意知:,
∴ ,
∴ 。
由時(shí),有,可得 。
∴ ,
。
(1)若,則在上單調(diào),故當(dāng)時(shí),
∴ 此時(shí)問題獲證.
(2)若,則當(dāng)時(shí),
又,
∴ 此時(shí)問題獲證。
綜上可知:當(dāng)時(shí),有。
點(diǎn)評:研究的性質(zhì),最好能夠得出其解析式,從這個(gè)意義上說,應(yīng)該盡量用已知條件來表達(dá)參數(shù). 確定三個(gè)參數(shù),只需三個(gè)獨(dú)立條件,本題可以考慮,,,這樣做的好處有兩個(gè):一是的表達(dá)較為簡潔,二是由于正好是所給條件的區(qū)間端點(diǎn)和中點(diǎn),這樣做能夠較好地利用條件來達(dá)到控制二次函數(shù)范圍的目的。
要考慮在區(qū)間上函數(shù)值的取值范圍,只需考慮其最大值,也即考慮在區(qū)間端點(diǎn)和頂點(diǎn)處的函數(shù)值。
題型7:二次函數(shù)的圖像與性質(zhì)
例13.(1996上海,文、理8)在下列圖象中,二次函數(shù)y=ax2+bx與指數(shù)函數(shù)y=()x的圖象只可能是( )
解析一:由指數(shù)函數(shù)圖象可以看出0<<1.拋物線方程是y=a(x+)2-,其頂點(diǎn)坐標(biāo)為(-,-),又由0<<1,可得-<-<0.觀察選擇支,可選A。
解析二:求y=ax2+bx與x軸的交點(diǎn),令ax2+bx=0,解得x=0或x=-,而-1<-<0.故選A。
點(diǎn)評:本題雖小,但一定要細(xì)致觀察圖象,注意細(xì)微之處,獲得解題靈感。
例14.(xx全國高考題)設(shè)a∈R,函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)討論f(x)的奇偶性
(2)求f(x)的最小值.
解:(1)顯然a=0時(shí),f(x)為偶函數(shù),
當(dāng)a≠0時(shí),f(a)=a2+1, f(-a)=a2+2|a|+1
f(a)≠f(-a), f(a)+f(-a)≠0
∴ 此時(shí)f(x)為非奇非偶函數(shù).
(2)首先應(yīng)先去掉絕對值,再進(jìn)行討論.
①當(dāng)x≤a時(shí),.
若,則f(x)在區(qū)間(-∞,a]上單調(diào)遞減,
∴ f(x)的最小值為f(a)=a2+1.(如圖(I))
若,則f(x)在區(qū)間(-∞,a]上的最小值為(如圖II).
②當(dāng)x≥a時(shí),,
若,則f(x)在[a,+∞]上的最小值為(如圖III)。
若,則f(x)在[a,+∞]上單調(diào)遞增。
則f(x)在[a,+∞]上的最小值為f(a)=a2+1.(如圖IV)。
綜上,當(dāng)時(shí),f(x)最小值為。
當(dāng)時(shí),f(x)最小值為a2+1。
當(dāng)時(shí),f(x)最小值為。
點(diǎn)評:該題考察到函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,考察了分類討論的思想。
題型8:二次函數(shù)的綜合問題
例15.(xx浙江文20)已知函數(shù)和的圖象關(guān)于原點(diǎn)對稱,且。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)解不等式;
(Ⅲ)若在上是增函數(shù),求實(shí)數(shù)的取值范圍。
解析:(Ⅰ)設(shè)函數(shù)的圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,則
∵點(diǎn)在函數(shù)的圖象上
∴
(Ⅱ)由
當(dāng)時(shí),,此時(shí)不等式無解。
當(dāng)時(shí),,解得。
因此,原不等式的解集為。
(Ⅲ)
①
②
ⅰ)
ⅱ)
點(diǎn)評:本題主要考查函數(shù)圖象的對稱、二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識,以及綜合運(yùn)用所學(xué)知識分析和解決問題的能力。
例16.已知函數(shù)。
(1)將的圖象向右平移兩個(gè)單位,得到函數(shù),求函數(shù)的解析式;
(2)函數(shù)與函數(shù)的圖象關(guān)于直線對稱,求函數(shù)的解析式;
(3)設(shè),已知的最小值是且,求實(shí)數(shù)的取值范圍。
解析:(1)
(2)設(shè)的圖像上一點(diǎn),點(diǎn)關(guān)于的對稱點(diǎn)為,由點(diǎn)Q在的圖像上,所以
,
于是
即
(3)。
設(shè),則。
問題轉(zhuǎn)化為:對恒成立. 即
對恒成立. (*)
故必有.(否則,若,則關(guān)于的二次函數(shù)開口向下,當(dāng)充分大時(shí),必有;而當(dāng)時(shí),顯然不能保證(*)成立.),此時(shí),由于二次函數(shù)的對稱軸,所以,問題等價(jià)于,即,
解之得:。
此時(shí),,故在取得最小值滿足條件。
點(diǎn)評:緊扣二次函數(shù)的頂點(diǎn)式對稱軸、最值、判別式顯合力。
五.思維總結(jié)
1.函數(shù)零點(diǎn)的求法:
①(代數(shù)法)求方程的實(shí)數(shù)根;
②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。
2.學(xué)習(xí)二次函數(shù),可以從兩個(gè)方面入手:一是解析式,二是圖像特征. 從解析式出發(fā),可以進(jìn)行純粹的代數(shù)推理,這種代數(shù)推理、論證的能力反映出一個(gè)人的基本數(shù)學(xué)素養(yǎng);從圖像特征出發(fā),可以實(shí)現(xiàn)數(shù)與形的自然結(jié)合,這正是中學(xué)數(shù)學(xué)中一種非常重要的思想方法. 本文將從這兩個(gè)方面研究涉及二次函數(shù)的一些綜合問題。
由于二次函數(shù)的解析式簡捷明了,易于變形(一般式、頂點(diǎn)式、零點(diǎn)式等),所以,在解決二次函數(shù)的問題時(shí),常常借助其解析式,通過純代數(shù)推理,進(jìn)而導(dǎo)出二次函數(shù)的有關(guān)性質(zhì)。
(1)二次函數(shù)的一般式中有三個(gè)參數(shù). 解題的關(guān)鍵在于:通過三個(gè)獨(dú)立條件“確定”這三個(gè)參數(shù)。
(2)數(shù)形結(jié)合:二次函數(shù)的圖像為拋物線,具有許多優(yōu)美的性質(zhì),如對稱性、單調(diào)性、凹凸性等。結(jié)合這些圖像特征解決有關(guān)二次函數(shù)的問題,可以化難為易,形象直觀。因?yàn)槎魏瘮?shù)在區(qū)間和區(qū)間上分別單調(diào),所以函數(shù)在閉區(qū)間上的最大值、最小值必在區(qū)間端點(diǎn)或頂點(diǎn)處取得;函數(shù)在閉區(qū)間上的最大值必在區(qū)間端點(diǎn)或頂點(diǎn)處取得。