2019-2020年高考數(shù)學(xué) 專(zhuān)題8.3 空間角與綜合問(wèn)題試題 理.doc
《2019-2020年高考數(shù)學(xué) 專(zhuān)題8.3 空間角與綜合問(wèn)題試題 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué) 專(zhuān)題8.3 空間角與綜合問(wèn)題試題 理.doc(55頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué) 專(zhuān)題8.3 空間角與綜合問(wèn)題試題 理 【三年高考】 1. 【xx課標(biāo)II,理10】已知直三棱柱中,,,,則異面直線與所成角的余弦值為( ) A. B. C. D. 【答案】C 2. 【xx浙江,9】如圖,已知正四面體D–ABC(所有棱長(zhǎng)均相等的三棱錐),P,Q,R分別為AB,BC,CA上的點(diǎn),AP=PB,,分別記二面角D–PR–Q,D–PQ–R,D–QR–P的平面角為α,β,γ,則 A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 【答案】B 【解析】設(shè)O為三角形ABC中心,則O到PQ距離最小,O到PR距離最大,O到RQ距離居中,而高相等,因此,所以選B. 3. 【xx課標(biāo)3,理16】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論: ①當(dāng)直線AB與a成60角時(shí),AB與b成30角; ②當(dāng)直線AB與a成60角時(shí),AB與b成60角; ③直線AB與a所成角的最小值為45; ④直線AB與a所成角的最小值為60. 其中正確的是________.(填寫(xiě)所有正確結(jié)論的編號(hào)) 【答案】②③ 【解析】由題意, 是以AC為軸,BC為底面半徑的圓錐的母線,由 ,又AC⊥圓錐底面,在底面內(nèi)可以過(guò)點(diǎn)B,作 ,交底面圓 于點(diǎn)D,如圖所示,連結(jié)DE,則DE⊥BD, ,連結(jié)AD,等腰△ABD中, ,當(dāng)直線AB與a成60角時(shí), ,故 ,又在 中, ,過(guò)點(diǎn)B作BF∥DE,交圓C于點(diǎn)F,連結(jié)AF,由圓的對(duì)稱(chēng)性可知 , 為等邊三角形, ,即AB與b成60角,②正確,①錯(cuò)誤. 由最小角定理可知③正確;很明顯,可以滿(mǎn)足平面ABC⊥直線a,直線 與 所成的最大角為90,④錯(cuò)誤.正確的說(shuō)法為②③. 4.【xx課標(biāo)1,理18】如圖,在四棱錐P-ABCD中,AB//CD,且. (1)證明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值. 【解析】(1)由已知,得AB⊥AP,CD⊥PD.由于AB∥CD ,故AB⊥PD ,從而AB⊥平面PAD.又AB 平面PAB,所以平面PAB⊥平面PAD. (2)在平面內(nèi)作,垂足為,由(1)可知,平面,故,可得平面.以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系.由(1)及已知可得,,,.所以,,,.設(shè)是平面的法向量,則,即,可取.設(shè)是平面的法向量,則,即,可取.則, 所以二面角的余弦值為. 5.【xx天津,理17】如圖,在三棱錐P-ABC中,PA⊥底面ABC,.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2. (Ⅰ)求證:MN∥平面BDE; (Ⅱ)求二面角C-EM-N的正弦值; (Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng). 【解析】如圖,以A為原點(diǎn),分別以,,方向?yàn)閤軸、y軸、z軸正方向建立空間直角坐標(biāo)系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0). (Ⅰ)證明:=(0,2,0),=(2,0,).設(shè),為平面BDE的法向量, 則,即.不妨設(shè),可得.又=(1,2,),可得. 因?yàn)槠矫鍮DE,所以MN//平面BDE. (Ⅱ)易知為平面CEM的一個(gè)法向量.設(shè)為平面EMN的法向量,則,因?yàn)?,,所?不妨設(shè),可得.因此有,于是.所以,二面角C—EM—N的正弦值為. (Ⅲ)依題意,設(shè)AH=h(),則H(0,0,h),進(jìn)而可得,.由已知,得,整理得,解得,或. 所以,線段AH的長(zhǎng)為或. 6.【xx高考新課標(biāo)1卷】平面過(guò)正方體ABCD-A1B1C1D1的頂點(diǎn)A,//平面CB1D1,平面ABCD=m,平面AB B1A1=n,則m、n所成角的正弦值為 (A) (B) (C) (D) 【答案】A 【解析】如圖,設(shè)平面平面=,平面平面=,因?yàn)槠矫?所以,則所成的角等于所成的角.延長(zhǎng),過(guò)作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A. 7. 【xx高考新課標(biāo)2理數(shù)】如圖,菱形的對(duì)角線與交于點(diǎn),,點(diǎn)分別在上,,交于點(diǎn).將沿折到位置,. (Ⅰ)證明:平面; (Ⅱ)求二面角的正弦值. 【解析】(I)由已知得,,又由得,故.因此,從而.由,得.由得.所以,.于是,,故.又,而,所以. (II)如圖,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,則,,,,,,,.設(shè)是平面的法向量,則,即,所以可以取.設(shè)是平面的法向量,則,即,所以可以取.于是, .因此二面角的正弦值是. 8. 【xx年高考北京理數(shù)】如圖,在四棱錐中,平面平面,,,,,,. (1)求證:平面; (2)求直線與平面所成角的正弦值; (3)在棱上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,說(shuō)明理由. 【解析】(1)因?yàn)槠矫嫫矫?,,所以平面,所以,又因?yàn)椋云矫妫? (3)設(shè)是棱上一點(diǎn),則存在使得.因此點(diǎn).因?yàn)槠矫妫云矫娈?dāng)且僅當(dāng),即,解得.所以在棱上存在點(diǎn)使得平面,此時(shí). 9. 【xx高考上海理數(shù)】將邊長(zhǎng)為1的正方形(及其內(nèi)部)繞的旋轉(zhuǎn)一周形成圓柱,如圖,長(zhǎng)為,長(zhǎng)為,其中與在平面的同側(cè)。 (1)求三棱錐的體積; (2)求異面直線與所成的角的大小。 【解析】(1)由題意可知,圓柱的高,底面半徑.由的長(zhǎng)為,可知.,. (2)設(shè)過(guò)點(diǎn)的母線與下底面交于點(diǎn),則,所以或其補(bǔ)角為直線與所成的角.由長(zhǎng)為,可知,又,所以,從而為等邊三角形,得.因?yàn)槠矫?,所以.在中,因?yàn)?,,,所以,從而直線與所成的角的大小為. 10. 【xx高考浙江,理8】如圖,已知,是的中點(diǎn),沿直線將折成,所成二面角的平面角為,則( ) A. B. C. D. 【答案】B. 【解析】設(shè),設(shè),則由題意,在空間圖形中,設(shè),在中,,在空間圖形中,過(guò)作,過(guò)作,垂足分別為,,過(guò)作,連結(jié),∴,則就是二面角的平面角,∴,在中,,,同理,,,故,顯然面,故,在中,,在中,,∵,,∴(當(dāng)時(shí)取等號(hào)),∵,,而在上為遞減函數(shù),∴,故選B. 11. 【xx高考新課標(biāo)2,理19】如圖,長(zhǎng)方體中,,,,點(diǎn),分別在,上,.過(guò)點(diǎn),的平面與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形. D D1 C1 A1 E F A B C B1 (Ⅰ)在圖中畫(huà)出這個(gè)正方形(不必說(shuō)出畫(huà)法和理由); (Ⅱ)求直線與平面所成角的正弦值. 【解析】(Ⅰ)交線圍成的正方形如圖: (Ⅱ)作,垂足為,則,,因?yàn)闉檎叫?,所以.于是,所以.以為坐?biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,.設(shè)是平面的法向量,則即所以可取.又,故.所以直線與平面所成角的正弦值為. 12. 【xx高考新課標(biāo)1,理18】如圖,,四邊形ABCD為菱形,∠ABC=120,E,F(xiàn)是平面ABCD同一側(cè)的兩點(diǎn),BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)證明:平面AEC⊥平面AFC; (Ⅱ)求直線AE與直線CF所成角的余弦值. 【解析】(Ⅰ)連接BD,設(shè)BD∩AC=G,連接EG,F(xiàn)G,EF,在菱形ABCD中,不妨設(shè)GB=1,由∠ABC=120,可得AG=GC=.由BE⊥平面ABCD,AB=BC可知,AE=EC,又∵AE⊥EC,∴EG=,EG⊥AC, 在Rt△EBG中,可得BE=,故DF=.在Rt△FDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,∴,∴EG⊥FG,∵AC∩FG=G,∴EG⊥平面AFC, ∵EG面AEC,∴平面AFC⊥平面AEC. 【xx考試大綱】 空間向量及其運(yùn)算 (1)了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示. (2)掌握空間向量的線性運(yùn)算及其坐標(biāo)表示. (3)掌握空間向量的數(shù)量積及其坐標(biāo)表示,能運(yùn)用向量的數(shù)量積判斷向量的共線與垂直. 2.空間向量的應(yīng)用 (1)理解直線的方向向量與平面的法向量. (2)能用向量語(yǔ)言表述直線與直線、直線與平面、平面與平面的垂直、平行關(guān)系. (3)能用向量方法證明有關(guān)直線和平面位置關(guān)系的一些定理(包括三垂線定理). (4)能用向量方法解決直線與直線、直線與平面、平面與平面的夾角的計(jì)算問(wèn)題,了解向量方法在研究立體幾何問(wèn)題中的應(yīng)用. 【三年高考命題回顧】 縱觀前三年各地高考試題, 高考對(duì)立體幾何的考查,可以發(fā)現(xiàn)均以規(guī)則幾何體為背景,這樣建立空間直角坐標(biāo)系較為容易,考查學(xué)生的化歸與轉(zhuǎn)化能力、空間想象能力以及基本運(yùn)算能力. 【xx年高考復(fù)習(xí)建議與高考命題預(yù)測(cè)】 由前三年的高考命題形式可以看出 ,空間向量的坐標(biāo)及運(yùn)算,空間向量的應(yīng)用,重點(diǎn)考查空間向量的應(yīng)用求夾角、求距離.課本淡化了利用空間關(guān)系找角、求距離這方面內(nèi)容的講解,而是加大了向量在這方面內(nèi)容應(yīng)用的講解,因此作為立體幾何的解答題,用向量方法處理有關(guān)夾角和距離將是主要方法,在復(fù)習(xí)時(shí)應(yīng)加大這方面的訓(xùn)練力度,題型上空間的夾角和距離主要以主觀題形式考查,但有時(shí)選擇題、填空題也涉及,難度中等偏高,從高考試題來(lái)看,利用空間向量證明平行與垂直,以及求空間角是高考的熱點(diǎn),題型主要為解答題,難度屬于中等,主要考查向量的坐標(biāo)運(yùn)算,以及向量的平行與垂直的充要條件,如何用向量法解決空間角問(wèn)題等,同時(shí)注重考查學(xué)生的空間想象能力、運(yùn)算能力.立體幾何題型一般是一個(gè)解答題,1至2個(gè)填空或選擇題.解答題一般與棱柱和棱錐相關(guān),主要考查線線關(guān)系、線面關(guān)系和面面關(guān)系,其重點(diǎn)是考查空間想象能力和推理運(yùn)算能力,其解題方法一般都有二種以上,并且一般都能用空間向量來(lái)求解.立體幾何側(cè)重考查學(xué)生的空間概念、邏輯思維能力、空間想象能力及運(yùn)算能力,近幾年凡涉及空間向量應(yīng)用于立體幾何的高考試題,都著重考查應(yīng)用空間向量求異面直線所成的角、二面角,證明線線平行、線面平行和證明異面直線垂直和線面垂直等基本問(wèn)題.預(yù)測(cè)xx年高考,仍然以規(guī)則幾何體為幾何背景,第一問(wèn)以線面垂直,面面垂直為主要考查點(diǎn),第二問(wèn)可能給出一個(gè)角,計(jì)算角的問(wèn)題,常見(jiàn)的是異面直線所成的角,直線與平面所成的角,平面與平面所成的二面角,這類(lèi)試題有一定的難度和需要一定的解題技巧,通常要把它們轉(zhuǎn)化為相交直線所成的角;也有可能求距離,試題中常見(jiàn)的是點(diǎn)與點(diǎn)之間的距離,點(diǎn)到直線的距離,點(diǎn)到平面的距離,直線與直線的距離,直線到平面的距離,要特別注意解決此類(lèi)問(wèn)題的轉(zhuǎn)化方法,有可能求點(diǎn)的位置或設(shè)置一個(gè)探索性命題,突出考查空間想象能力和邏輯推理能力,以及分析問(wèn)題、解決問(wèn)題的能力.復(fù)習(xí)建議:空間圖形中的角與距離,先根據(jù)定義找出或作出所求的角與距離,然后通過(guò)解三角形等方法求值,注意“作、證、算”的有機(jī)統(tǒng)一.解題時(shí)注意各種角的范圍.異面直線所成角的范圍是0<θ≤90,其方法是平移法和補(bǔ)形法;直線與平面所成角的范圍是0≤θ≤90,其解法是作垂線、找射影;二面角0≤θ≤180.平面圖形的翻折與空間圖形的展開(kāi)問(wèn)題,要對(duì)照翻折(或展開(kāi))前后兩個(gè)圖形,分清哪些元素的位置(或數(shù)量)關(guān)系改變了,哪些沒(méi)有改變. 【xx年高考考點(diǎn)定位】 對(duì)立體幾何中的向量方法部分,主要以解答題的方式進(jìn)行考查,而且偏重在第二問(wèn)或者第三問(wèn)中使用這個(gè)方法,考查的重點(diǎn)是使用空間向量的方法進(jìn)行空間角和距離等問(wèn)題的計(jì)算,把立體幾何問(wèn)題轉(zhuǎn)化為空間向量的運(yùn)算問(wèn)題. 【考點(diǎn)1】空間向量 【備考知識(shí)梳理】 1.空間向量的概念 向量:在空間,我們把具有大小和方向的量叫做向量.如位移、速度、力等 相等向量:長(zhǎng)度相等且方向相同的向量叫做相等向量. 表示方法:用有向線段表示,并且同向且等長(zhǎng)的有向線段表示同一向量或相等的向量. 說(shuō)明:①由相等向量的概念可知,一個(gè)向量在空間平移到任何位置,仍與原來(lái)的向量相等,用同向且等長(zhǎng)的有向線段表示;②平面向量?jī)H限于研究同一平面內(nèi)的平移,而空間向量研究的是空間的平移. 2.向量運(yùn)算和運(yùn)算率 ,, 加法交換律:加法結(jié)合律:數(shù)乘分配律: 說(shuō)明:①引導(dǎo)學(xué)生利用右圖驗(yàn)證加法交換率,然后推廣到首尾相接的若干向量之和;②向量加法的平行四邊形法則在空間仍成立 3.平行向量(共線向量):如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量.平行于記作∥. 注意:當(dāng)我們說(shuō)、共線時(shí),對(duì)應(yīng)的有向線段所在直線可能是同一直線,也可能是平行直線;當(dāng)我們說(shuō)、平行時(shí),也具有同樣的意義. 共線向量定理:對(duì)空間任意兩個(gè)向量(≠)、,∥的充要條件是存在實(shí)數(shù)使= 注:⑴上述定理包含兩個(gè)方面:①性質(zhì)定理:若∥(≠0),則有=,其中是唯一確定的實(shí)數(shù).②判斷定理:若存在唯一實(shí)數(shù),使=(≠0),則有∥(若用此結(jié)論判斷、所在直線平行,還需(或)上有一點(diǎn)不在(或)上). ⑵對(duì)于確定的和,=表示空間與平行或共線,長(zhǎng)度為 ||,當(dāng)>0時(shí)與同向,當(dāng)<0時(shí)與反向的所有向量 ⑶若直線l∥,,P為l上任一點(diǎn),O為空間任一點(diǎn),下面根據(jù)上述定理來(lái)推導(dǎo)的表達(dá)式. 推論:如果l為經(jīng)過(guò)已知點(diǎn)A且平行于已知非零向量的直線,那么對(duì)任一點(diǎn)O,點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,滿(mǎn)足等式 ① 其中向量叫做直線l的方向向量 在l上取,則①式可化為 ② 當(dāng)時(shí),點(diǎn)P是線段AB的中點(diǎn),則 ③ ①或②叫做空間直線的向量參數(shù)表示式,③是線段AB的中點(diǎn)公式. 4.向量與平面平行:如果表示向量的有向線段所在直線與平面平行或在平面內(nèi),我們就說(shuō)向量平行于平面,記作∥.注意:向量∥與直線a∥的聯(lián)系與區(qū)別. 共面向量:我們把平行于同一平面的向量叫做共面向量 共面向量定理 如果兩個(gè)向量、不共線,則向量與向量、共面的充要條件是存在實(shí)數(shù)對(duì)x、y,使① 注:與共線向量定理一樣,此定理包含性質(zhì)和判定兩個(gè)方面. 推論:空間一點(diǎn)P位于平面MAB內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì)x、y,使 ④ 或?qū)臻g任一定點(diǎn)O,有⑤ 在平面MAB內(nèi),點(diǎn)P對(duì)應(yīng)的實(shí)數(shù)對(duì)()是唯一的.①式叫做平面MAB的向量表示式 又∵代入⑤,整理得 ⑥ 由于對(duì)于空間任意一點(diǎn)P,只要滿(mǎn)足等式④、⑤、⑥之一(它們只是形式不同的同一等式),點(diǎn)P就在平面MAB內(nèi);對(duì)于平面MAB內(nèi)的任意一點(diǎn)P,都滿(mǎn)足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共線的兩個(gè)向量、(或不共線三點(diǎn)M、A、B)確定的空間平面的向量參數(shù)方程,也是M、A、B、P四點(diǎn)共面的充要條件 5.空間向量基本定理:如果三個(gè)向量、、不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組,使 說(shuō)明:⑴由上述定理知,如果三個(gè)向量、、不共面,那么所有空間向量所組成的集合就是,這個(gè)集合可看作由向量、、生成的,所以我們把{,,}叫做空間的一個(gè)基底,,,都叫做基向量;⑵空間任意三個(gè)不共面向量都可以作為空間向量的一個(gè)基底;⑶一個(gè)基底是指一個(gè)向量組,一個(gè)基向量是指基底中的某一個(gè)向量,二者是相關(guān)聯(lián)的不同的概念;⑷由于可視為與任意非零向量共線.與任意兩個(gè)非零向量共面,所以,三個(gè)向量不共面就隱含著它們都不是. 推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對(duì)空間任一點(diǎn)P,都存在唯一的有序?qū)崝?shù)組,使 6.?dāng)?shù)量積 (1)夾角:已知兩個(gè)非零向量、,在空間任取一點(diǎn)O,作,,則角∠AOB叫做向量與的夾角,記作 說(shuō)明:⑴規(guī)定0≤≤,因而=; ⑵如果=,則稱(chēng)與互相垂直,記作⊥; ⑶在表示兩個(gè)向量的夾角時(shí),要使有向線段的起點(diǎn)重合,注意圖(3)、(4)中的兩個(gè)向量的夾角不同, 圖(3)中∠AOB=, 圖(4)中∠AOB=, 從而有==. (2)向量的模:表示向量的有向線段的長(zhǎng)度叫做向量的長(zhǎng)度或模. (3)向量的數(shù)量積:叫做向量、的數(shù)量積,記作.即=, 向量: (4)性質(zhì)與運(yùn)算率 ⑴,⑵⊥=0,⑶ (4),(5)=,(6) 7.空間向量的坐標(biāo)表示及運(yùn)算 (1)數(shù)量積的坐標(biāo)運(yùn)算 設(shè),,則①; ②;③. (2)共線與垂直的坐標(biāo)表示 設(shè),, 則, (均為非零向量). (3)模、夾角和距離公式 設(shè),,則,. 設(shè),則. 【規(guī)律方法技巧】 1.將四點(diǎn)共面問(wèn)題,轉(zhuǎn)化為三個(gè)向量共面問(wèn)題,利用共面向量定理來(lái)解決. 2.利用向量共線說(shuō)明兩線平行時(shí)注意說(shuō)明四點(diǎn)不共線,否則不一定正確. 3. 立體幾何中的向量方法 (1)直線的方向向量與平面的法向量的確定 ①直線的方向向量:是空間一直線,是直線上任意兩點(diǎn),則稱(chēng)為直線的方向向量,與平行的任意非零向量也是直線的方向向量. ②平面的法向量可利用方程組求出:設(shè)是平面內(nèi)兩不共線向量,為平面的法向量,則求法向量的方程組為. 4.易錯(cuò)點(diǎn):(1)共線向量定理中∥?存在實(shí)數(shù)使=易忽視≠0.(3)共面向量定理中,注意有序?qū)崝?shù)對(duì)()是唯一存在的.(3)一個(gè)平面的法向量有無(wú)數(shù)個(gè),但要注意它們是共線向量,不要誤為是共面向量. 5.如何建立適當(dāng)?shù)淖鴺?biāo)系:根據(jù)幾何體本身的幾何性質(zhì),恰當(dāng)建立空間直角坐標(biāo)系最為關(guān)鍵,如果坐標(biāo)系引入的恰當(dāng),合理,即能夠容易確定點(diǎn)的坐標(biāo),需要總結(jié)一些建系方法.常見(jiàn)建系方法: (1)借助三條兩兩相交且垂直的棱為坐標(biāo)軸,如正方體,長(zhǎng)方體等規(guī)則幾何體,一般選擇三條線為三個(gè)坐標(biāo)軸,如圖1、2; (2)借助面面垂直的性質(zhì)定理建系,若題目中出現(xiàn)側(cè)面和底面垂線的條件,一般利用此條件添加輔助線,確定z軸,如圖3; (3)借助棱錐的高線建系等.對(duì)于正棱錐,利用定點(diǎn)在底面的射影為底面的中心,可確定z軸,然后在底面確定互相垂直的直線分別為x,y軸.如圖4. 【考點(diǎn)針對(duì)訓(xùn)練】 1.一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫(huà)該四面體三視圖中的主視圖時(shí),以平面為投影面,則得到主視圖可以為( ) A. B. C. D. 【答案】A 【解析】由已知可作出示意圖,以平面為投影面,則得到主視圖可以為A選項(xiàng)所示 2. 有以下命題:①如果向量、與任何向量不能構(gòu)成空間向量的一個(gè)基底,那么、的關(guān)系是不共線;②為空間四點(diǎn),且向量,,不構(gòu)成空間的一個(gè)基底,那么點(diǎn)一定共面;③已知向量,,是空間的一個(gè)基底,則向量也是空間的一個(gè)基底.其中正確的命題是( ) A.①② B.①③ C.②③ D.①②③ 【答案】C 【解析】 對(duì)于①,“如果向量、與任何向量不能構(gòu)成空間向量的一個(gè)基底,那么、的關(guān)系一定是共線”,所以①錯(cuò)誤.②③正確. 【考點(diǎn)2】空間角,距離的求法 【備考知識(shí)梳理】 1.空間的角 (1)異面直線所成的角 如圖,已知兩條異面直線,經(jīng)過(guò)空間任一點(diǎn)作直線.則把與所成的銳角(或直角)叫做異面直線與所成的角(或夾角).異面直線所成的角的范圍是. (2)平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角. ①直線垂直于平面,則它們所成的角是直角;②直線和平面平行,或在平面內(nèi),則它們所成的角是的角.直線與平面所成角的范圍是. (3)二面角的平面角 如圖在二面角的棱上任取一點(diǎn),以點(diǎn)為垂足,在半平面和內(nèi)分別作垂直于棱的射線和,則叫做二面角的平面角.二面角的范圍是 (4)等角定理 如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,并且方向相同,那么這兩個(gè)角相等. 推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等. 2.空間向量與空間角的關(guān)系 (1)設(shè)異面直線和的方向向量分別為和,則與的夾角滿(mǎn)足. (2)設(shè)直線的方向向量和平面的法向量分別為,則直線與平面的夾角滿(mǎn)足. (3)求二面角的大小 (ⅰ)如圖①,是二面角的兩個(gè)面內(nèi)與棱l垂直的直線,則二面角的大?。? (ⅱ)如圖②③,分別是二面角的兩個(gè)半平面的法向量,則二面角的大小滿(mǎn)足或. 3.空間距離: (1)兩條異面直線的距離 兩條異面直線的公垂線在這兩條異面直線間的線段的長(zhǎng)度,叫做兩條異面直線的距離;常有求法①先證線段為異面直線的公垂線段,然后求出的長(zhǎng)即可.②找或作出過(guò)且與平行的平面,則直線到平面的距離就是異面直線間的距離.③找或作出分別過(guò)且與,分別平行的平面,則這兩平面間的距離就是異面直線間的距離.④根據(jù)異面直線間的距離公式EF =(“”符號(hào)由實(shí)際情況選定)求距離. (2)點(diǎn)到平面的距離 點(diǎn)P到直線的距離為點(diǎn)P到直線的垂線段的長(zhǎng),常先找或作直線所在平面的垂線,得垂足為A,過(guò)A作的垂線,垂足為B連PB,則由三垂線定理可得線段PB即為點(diǎn)P到直線的距離.在直角三角形PAB中求出PB的長(zhǎng)即可.常用求法①作出點(diǎn)P到平面的垂線后求出垂線段的長(zhǎng);②轉(zhuǎn)移法,如果平面的斜線上兩點(diǎn)A,B到斜足C的距離AB,AC的比為,則點(diǎn)A,B到平面的距離之比也為.特別地,AB=AC時(shí),點(diǎn)A,B到平面的距離相等;③體積法 (3)直線與平面的距離:一條直線和一個(gè)平面平行,這條直線上任意一點(diǎn)到平面的距離,叫做這條直線和平面的距離; (4)平行平面間的距離:兩個(gè)平行平面的公垂線段的長(zhǎng)度,叫做兩個(gè)平行平面的距離. 【規(guī)律方法技巧】 1.空間中各種角包括:異面直線所成的角、直線與平面所成的角以及二面角. (1)異面直線所成的角的范圍是.求兩條異面直線所成的角的大小一般方法是通過(guò)平行移動(dòng)直線,把異面問(wèn)題轉(zhuǎn)化為共面問(wèn)題來(lái)解決 具體步驟如下:①利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選擇在特殊的位置上;②證明作出的角即為所求的角;③利用三角形來(lái)求角; ④補(bǔ)形法:將空間圖形補(bǔ)成熟悉的、完整的幾何體,這樣有利于找到兩條異面直線所成的角θ. (2)直線與平面所成的角的范圍是.求線面角方法: ①利用面面垂直性質(zhì)定理,巧定垂足:由面面垂直的性質(zhì)定理,可以得到線面垂直,這就為線面角中的垂足的確定提供了捷徑. ②利用三棱錐的等體積,省去垂足, 在構(gòu)成線面角的直角三角形中,其中垂線段尤為關(guān)鍵.確定垂足,是常規(guī)方法.可是如果垂足位置不好確定,此時(shí)可以利用求點(diǎn)面距常用方法---等體積法.從而不用確定垂足的位置,照樣可以求出線面角.因?yàn)榇咕€段的長(zhǎng)度實(shí)際就是點(diǎn)面距h,利用三棱錐的等體積,只需求出h,然后利用進(jìn)行求解. ③妙用公式,直接得到線面角 課本習(xí)題出現(xiàn)過(guò)這個(gè)公式:,如圖所示:.其中為直線AB與平面所成的線面角.這個(gè)公式在求解一些選擇填空題時(shí),可直接應(yīng)用.但是一定要注意三個(gè)角的位置,不能張冠李戴. ④萬(wàn)能方法,空間向量求解不用找角 設(shè)AB是平面的斜線,BO是平面的垂線,AB與平面所成的角,向量與的夾角,則. 注:斜線和平面所成的角,是它和平面內(nèi)任何一條直線所成的一切角中的最小角,即若θ為線面角,α為斜線與平面內(nèi)任何一條直線所成的角,則有; (3)確定點(diǎn)的射影位置有以下幾種方法: ①斜線上任意一點(diǎn)在平面上的射影必在斜線在平面的射影上; ②如果一個(gè)角所在的平面外一點(diǎn)到角的兩邊距離相等,那么這一點(diǎn)在平面上的射影在這個(gè)角的平分線上;如果一條直線與一個(gè)角的兩邊的夾角相等,那么這一條直線在平面上的射影在這個(gè)角的平分線上; ③兩個(gè)平面相互垂直,一個(gè)平面上的點(diǎn)在另一個(gè)平面上的射影一定落在這兩個(gè)平面的交線上; ④利用某些特殊三棱錐的有關(guān)性質(zhì),確定頂點(diǎn)在底面上的射影的位置: a.如果側(cè)棱相等或側(cè)棱與底面所成的角相等,那么頂點(diǎn)落在底面上的射影是底面三角形的外心; b. 如果頂點(diǎn)到底面各邊距離相等或側(cè)面與底面所成的角相等,那么頂點(diǎn)落在底面上的射影是底面三角形的內(nèi)心(或旁心); c. 如果側(cè)棱兩兩垂直或各組對(duì)棱互相垂直,那么頂點(diǎn)落在底面上的射影是底面三角形的垂心; (4)二面角的范圍,解題時(shí)要注意圖形的位置和題目的要求.求二面角的方法: ①直接法.直接法求二面角大小的步驟是:一作(找)、二證、三計(jì)算.即先作(找)出表示二面角大小的平面角,并證明這個(gè)角就是所求二面角的平面角,然后再計(jì)算這個(gè)角的大小. 用直接法求二面角的大小,其關(guān)鍵是確定表示二面角大小的平面角.而確定其平面角,可從以下幾個(gè)方面著手:①利用三垂線定理(或三垂線定理的逆定理)確定平面角,自二面角的一個(gè)面上一點(diǎn)向另一面引垂線,再由垂足向棱作垂線得到棱上的點(diǎn)(即垂足),斜足與面上一點(diǎn)連線和斜足與垂足連線所夾的角,即為二面角的平面角;;②利用與二面角的棱垂直的平面確定平面角, 自空間一點(diǎn)作與棱垂直的平面,截二面角得兩條射線,這兩條射線所成的角就是二面角的平面角;③利用定義確定平面角, 在棱上任取一點(diǎn),過(guò)這點(diǎn)在兩個(gè)平面內(nèi)分別引棱的垂線,這兩條射線所成的角,就是二面角的平面角; ②射影面積法.利用射影面積公式= ;此方法常用于無(wú)棱二面角大小的計(jì)算;對(duì)于無(wú)棱二面角問(wèn)題還有一條途徑是設(shè)法作出它的棱,作法有“平移法”“延伸平面法”等. ③空間向量法:法一: 是二面角的兩個(gè)面內(nèi)與棱l垂直的直線,則二面角的大小. 法二:設(shè),是二面角的兩個(gè)半平面的法向量,其方向一個(gè)指向內(nèi)側(cè),另一個(gè)指向外側(cè)(同等異補(bǔ)),則二面角的平面角或. 2. 求距離的關(guān)鍵是化歸.即空間距離向平面距離化歸,具體方法如下: (1)求空間中兩點(diǎn)間的距離,一般轉(zhuǎn)化為解直角三角形或斜三角形. (2)求點(diǎn)到直線的距離和點(diǎn)到平面的距離,一般轉(zhuǎn)化為求直角三角形斜邊上的高;或利用三棱錐的底面與頂點(diǎn)的輪換性轉(zhuǎn)化為三棱錐的高,即用體積法. (3)求距離的一般方法和步驟:應(yīng)用各種距離之間的轉(zhuǎn)化關(guān)系和“平行移動(dòng)”的思想方法,把所求的距離轉(zhuǎn)化為點(diǎn)點(diǎn)距、點(diǎn)線距或點(diǎn)面距求之,其一般步驟是:①找出或作出表示有關(guān)距離的線段;②證明它符合定義;③歸到解某個(gè)三角形.若表示距離的線段不容易找出或作出,可用體積等積法計(jì)算求之.異面直線上兩點(diǎn)間距離公式,如果兩條異面直線a 、b 所成的角為q ,它們的公垂線AA′的長(zhǎng)度為d ,在a 上有線段A′E =m ,b 上有線段AF =n ,那么EF =(“”符號(hào)由實(shí)際情況選定) 3.求空間中線面的夾角或距離需注意以下幾點(diǎn): ①注意根據(jù)定義找出或作出所求的成角或距離,一般情況下,力求明確所求角或距離的位置. ②作線面角的方法除平移外,補(bǔ)形也是常用的方法之一;求線面角的關(guān)鍵是尋找兩“足”(斜足與垂足),而垂足的尋找通常用到面面垂直的性質(zhì)定理. ③求二面角高考中每年必考,復(fù)習(xí)時(shí)必須高度重視.二面角的平角的常用作法有三種: 根據(jù)定義或圖形特征作;根據(jù)三垂線定理(或其逆定理)作,難點(diǎn)在于找到面的垂線.解決辦法,先找面面垂直,利用面面垂直的性質(zhì)定理即可找到面的垂線;作棱的垂面.作二面角的平面角應(yīng)把握先找后作的原則.此外在解答題中一般不用公式“= ”求二面角否則要適當(dāng)扣分. ④求點(diǎn)到平面的距離常用方法是直接法與間接法,利用直接法求距離需找到點(diǎn)在面內(nèi)的射影,此時(shí)??紤]面面垂直的性質(zhì)定理與幾何圖形的特殊性質(zhì).而間接法中常用的是等積法及轉(zhuǎn)移法. ⑤求角與距離的關(guān)鍵是將空間的角與距離靈活轉(zhuǎn)化為平面上的角與距離,然后將所求量置于一個(gè)三角形中,通過(guò)解三角形最終求得所需的角與距離. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【陜西省西安市長(zhǎng)安區(qū)xx屆高三4月模擬】如圖所示是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊長(zhǎng)為2,側(cè)視圖是一直角三角形,俯視圖為一直角梯形,且,則異面直線與所成角的正切值是( ) A. 1 B. C. D. 【答案】C 【解析】如圖,取的中點(diǎn),連接,依題意得, ,所以為異面直線與所成角,因?yàn)椋?,故選C. 2. 【xx屆上海市黃浦區(qū)高三4月高考模擬】如圖,在直棱柱中,,,分別是的中點(diǎn). (1)求證:; (2)求與平面所成角的大小及點(diǎn)到平面的距離. 【解析】(1)以A為坐標(biāo)原點(diǎn)、AB為x軸、為y軸、為z軸建立如圖的空間直角坐標(biāo)系.由題意可知,故, 由,可知,即. (2)設(shè)是平面的一個(gè)法向量,又,故由解得 故. 設(shè)與平面所成角為,則,所以與平面所成角為,點(diǎn)到平面的距離為. 【考點(diǎn)3】空間向量的應(yīng)用 【備考知識(shí)梳理】 1. 直線的方向向量:是空間一直線,是直線上任意兩點(diǎn),則稱(chēng)為直線的方向向量,與平行的任意非零向量也是直線的方向向量. 2. 如何確定平面的法向量 (1)首先觀察是否與存在于面垂直的法向量,若有可直接確定,若不存在,轉(zhuǎn)化為待定系數(shù)法; (2)待定系數(shù)法:由于法向量沒(méi)有規(guī)定長(zhǎng)度,僅規(guī)定了方向,所以有一個(gè)自由度,于是可把法向量的某個(gè)坐標(biāo)設(shè)為1,再求另兩個(gè)坐標(biāo).由于平面法向量是垂直于平面的向量,所以取平面的兩條相交向量,設(shè)由解方程組求得. 【規(guī)律方法技巧】 1.用向量證明空間中的平行關(guān)系 ①設(shè)直線和的方向向量分別為和,則∥ (或與重合)? ∥. ②設(shè)直線的方向向量為,與平面共面的兩個(gè)不共線向量和,則∥或??存在兩個(gè)實(shí)數(shù),使. ③設(shè)直線的方向向量為,平面的法向量為,則l∥α或l?α?⊥. ④設(shè)平面和的法向量分別為,,則α∥β?∥. 2.用向量證明空間中的垂直關(guān)系 ①設(shè)直線l1和l2的方向向量分別為和,則l1⊥l2?⊥?.=0. ②設(shè)直線l的方向向量為,平面的法向量為,則⊥?∥ ③設(shè)平面和的法向量分別為和,則α⊥β?⊥?=0. 3.用法向量球距離: (1)用法向量求異面直線間的距離:如右圖所示,a、b是兩異面直線,是a和b 的法向量,點(diǎn)E∈a,F(xiàn)∈b,則異面直線 a與b之間的距離是 ; (2)用法向量求點(diǎn)到平面的距離 如右圖所示,已知AB是平面α的 一條斜線,為平面α的法向量,則 A到平面α的距離為; (3)用法向量求直線到平面間的距離 首先必須確定直線與平面平行,然后將直線到平面的距離問(wèn)題轉(zhuǎn)化成直線上一點(diǎn)到平面的距離問(wèn)題 (4)用法向量求兩平行平面間的距離 首先必須確定兩個(gè)平面是否平行,這時(shí)可以在一個(gè)平面上任取一點(diǎn),將兩平面間的距離問(wèn)題轉(zhuǎn)化成點(diǎn)到平面的距離問(wèn)題. 4. 用法向量求角 (1)用法向量求二面角 如圖,有兩個(gè)平面α與β,分別作這兩個(gè)平面的法向量與,則平面α與β所成的角跟法向量與所成的角相等或互補(bǔ),所以首先必須判斷二面角是銳角還是鈍角. (2)法向量求直線與平面所成的角 要求直線a與平面α所成的角θ,先求這個(gè)平面α的法向量與直線a的夾角的余弦,易知θ=或者. 5.利用空間向量坐標(biāo)運(yùn)算求解問(wèn)題的方法:用空間向量解決立體幾何中的平行或共線問(wèn)題一般用向量共線定理;求兩點(diǎn)間距離或某一線段的長(zhǎng)度,一般用向量的模來(lái)解決;解決垂直問(wèn)題一般可轉(zhuǎn)化為向量的數(shù)量積為零;求異面直線所成的角,一般可以轉(zhuǎn)化為兩向量的夾角,但要注意兩種角的范圍不同,最后應(yīng)進(jìn)行轉(zhuǎn)化. 6.易誤警示:利用平面的法向量求二面角的大小時(shí),當(dāng)求出兩半平面α、β的法向量n1,n2時(shí),要根據(jù)向量坐標(biāo)在圖形中觀察法向量的方向,從而確定二面角與向量n1,n2的夾角是相等,還是互補(bǔ),這是利用向量求二面角的難點(diǎn)、易錯(cuò)點(diǎn). 異面直線所成角范圍是(0,90],若異面直線a,b的方向向量為m,n,異面直線a,b所成角為θ,則cos θ=|cos〈m,n〉|.解題過(guò)程是:(1)建系;(2)求點(diǎn)坐標(biāo);(3)表示向量;(4)計(jì)算. (1)異面直線的夾角與向量的夾角有所不同,應(yīng)注意思考它們的區(qū)別與聯(lián)系. (2)直線與平面的夾角可以轉(zhuǎn)化成直線的方向向量與平面的法向量的夾角,由于向量方向的變化,所以要注意它們的區(qū)別與聯(lián)系. 求二面角最常用的方法就是分別求出二面角的兩個(gè)面所在平面的法向量,然后通過(guò)兩個(gè)平面的法向量的夾角得到二面角的大小,但要注意結(jié)合實(shí)際圖形判斷所求角是銳角還是鈍角. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【湖南省長(zhǎng)沙市xx屆高三5月模擬】如圖所示,四棱錐的底面是梯形,且, 平面, 是中點(diǎn), . (Ⅰ)求證: 平面; (Ⅱ)若, ,求直線與平面所成角的大?。? 【解析】(Ⅰ)取的中點(diǎn),連結(jié),如圖所示.因?yàn)椋裕驗(yàn)槠矫妫?平面,所以.又因?yàn)?,所以平面.因?yàn)辄c(diǎn)是中點(diǎn),所以,且.又因?yàn)?,且,所以,且,所以四邊形為平行四邊形,所以,所以平面? (Ⅱ)解:設(shè)點(diǎn)O,G分別為AD,BC的中點(diǎn),連結(jié),則,因?yàn)槠矫妫?平面,所以,所以.因?yàn)?,由(Ⅰ)知?又因?yàn)?,所以,所以所以為正三角形,所以,因?yàn)槠矫妫?平面,所以.又因?yàn)椋云矫妫蕛蓛纱怪?,可以點(diǎn)O為原點(diǎn),分別以的方向?yàn)檩S的正方向,建立空間直角坐標(biāo)系,如圖所示., , ,所以, , ,設(shè)平面的法向量, 則所以取,則,設(shè)與平面所成的角為,則,因?yàn)?,所以,所以與平面所成角的大小為. 2. 【山東省淄博市xx屆高三第二次模擬】如圖,在三棱錐中,,,,點(diǎn)在平面內(nèi),,. (Ⅰ)求證:平面; (Ⅱ)設(shè)點(diǎn)在棱上,若二面角的余弦值為,試求的值. 【解析】(Ⅰ)證明:連接,設(shè)交于,因?yàn)槭堑妊苯侨切?,所以,又,所以是和的中點(diǎn)已知,所以四邊形是正方形則,又,所以平面,同理,所以平面 (Ⅱ)由(Ⅰ)的證明過(guò)程知為正方形,如圖建立坐標(biāo)系,則:,,,,,設(shè)(),,由可得,則, 易知平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為,則得,令得,,所以, 解得,所以 【考點(diǎn)4】立體幾何綜合問(wèn)題 【備考知識(shí)梳理】 空間線、面的平行與垂直的綜合考查一直是高考必考熱點(diǎn).歸納起來(lái)常見(jiàn)的命題角度有: 1)以多面體為載體綜合考查平行與垂直的證明. 2)探索性問(wèn)題中的平行與垂直問(wèn)題. 3)折疊問(wèn)題中的平行與垂直問(wèn)題. 【規(guī)律方法技巧】 1. 證線面平行,一般都考慮采用以下兩種方法:第一,用線面平行的判定定理,第二用面面平行的性質(zhì)定理;2、證面面垂直,關(guān)鍵是考慮證哪條線垂直哪個(gè)面.這必須結(jié)合條件中各種垂直關(guān)系充分發(fā)揮空間想象綜合考慮;3、條件中告訴我們某種位置關(guān)系,就要聯(lián)系到相應(yīng)的性質(zhì)定理.比如本題中已知兩平面互相垂直,我們就要兩平面互相垂直的性質(zhì)定理;4、在立體幾何的平行關(guān)系問(wèn)題中,“中點(diǎn)”是經(jīng)常使用的一個(gè)特殊點(diǎn),無(wú)論是試題本身的已知條件,還是在具體的解題中,通過(guò)找“中點(diǎn)”,連“中點(diǎn)”,即可出現(xiàn)平行線;若是給出了一些比例關(guān)系,則通過(guò)比例關(guān)系證明線線平行.線線平行是平行關(guān)系的根本.5、在垂直關(guān)系的證明中,線線垂直是問(wèn)題的核心,可以根據(jù)已知的平面圖形通過(guò)計(jì)算的方式證明線線垂直,也可以根據(jù)已知的垂直關(guān)系證明線線垂直,其中要特別重視兩個(gè)平面垂直的性質(zhì)定理,這個(gè)定理已知的是兩個(gè)平面垂直,結(jié)論是線面垂直. 2. 探索性問(wèn)題:探求某些點(diǎn)的具體位置,使得線面滿(mǎn)足平行或垂直關(guān)系,是一類(lèi)逆向思維的題目.一般可采用兩個(gè)方法:一是先假設(shè)存在,再去推理,下結(jié)論;二是運(yùn)用推理證明計(jì)算得出結(jié)論,或先利用條件特例得出結(jié)論,然后再根據(jù)條件給出證明或計(jì)算.探索性問(wèn)題一般是先根據(jù)條件猜測(cè)點(diǎn)的位置再給出證明,探索點(diǎn)存在問(wèn)題,點(diǎn)多為中點(diǎn)或三等分點(diǎn)中某一個(gè),也可以根據(jù)相似知識(shí)建點(diǎn). 3.折疊問(wèn)題中的平行與垂直關(guān)系的處理關(guān)鍵是結(jié)合圖形弄清折疊前后變與不變的數(shù)量關(guān)系,弄清哪些角度和長(zhǎng)度變了,哪些沒(méi)有變;哪些線共面,哪些線不共面,翻折后的線與原來(lái)的線有什么聯(lián)系,尤其要注意找出互相平行或垂直的直線. 尤其是隱含著的垂直關(guān)系. 4.把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題,從解決平面問(wèn)題而使空間問(wèn)題得以解決.求角的三個(gè)基本步驟:“作”、“證”、“算”. (1)常用等角定理或平行移動(dòng)直線及平面的方法轉(zhuǎn)化所求角的位置; (2)常用平行線間、平行線面間或平行平面間距離相等為依據(jù)轉(zhuǎn)化所求距離的位置; (3)常用割補(bǔ)法或等積(等面積或等體積)變換解決有關(guān)距離及體積問(wèn)題. 5. 向量為謀求解立體幾何的探索性問(wèn)題:空間向量最合適于解決立體幾何中探索性問(wèn)題,它無(wú)需進(jìn)行復(fù)雜繁難的作圖、論證、推理,只需通過(guò)坐標(biāo)運(yùn)算進(jìn)行判斷,在解題過(guò)程中,往往把“是否存在”問(wèn)題,轉(zhuǎn)化為“點(diǎn)的坐標(biāo)是否有解,是否有規(guī)定范圍的解”等,所以使問(wèn)題的解集更加簡(jiǎn)單、有效,應(yīng)善于運(yùn)用這一方法解題. 【考點(diǎn)針對(duì)訓(xùn)練】 1. 【福建省莆田xx屆高三二?!?如圖,在梯形中, , ,四邊形為矩形,且平面, . (1)求證: 平面; (2)點(diǎn)在線段(含端點(diǎn))上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值. 【解析】 (I)在梯形中,∵,設(shè),又∵,∴,∴∴∴. ∵, ,∴,而,∴ ∵ ∴. (II)由(I)可建立分別以直線, , 為軸, 軸, 軸的如圖所示建立空間直角坐標(biāo)系, 設(shè),令 (),則 (0,0,0), (,0,0), (0,1,0), (,0,1),∴=(-,1,0), =( ,-1,1), 設(shè)為平面的一個(gè)法向量,由得取,則=(1, , ), ∵=(1,0,0)是平面的一個(gè)法向量,∴ ∵,∴當(dāng)時(shí), 有最小值,∴點(diǎn)與點(diǎn)重合時(shí),平面與平面所成二面角最大,此時(shí)二面角的余弦值為. 2. 【福建泉州xx年畢業(yè)班質(zhì)量檢查】 如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點(diǎn),點(diǎn)在線段上. (Ⅰ)求證: ; (Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等. (Ⅱ)側(cè)面底面, ,所以底面,所以直線兩兩互相垂直,以為原點(diǎn),直線為坐標(biāo)軸,建立如圖所示空間直角坐標(biāo)系,則 ,所以, , ,設(shè),則, ,所以,易得平面的法向量. 設(shè)平面的法向量為,由, ,得,令,得.因?yàn)橹本€與平面所成的角和此直線與平面所成的角相等,所以,即,所以,即,解得,所以. 【應(yīng)試技巧點(diǎn)撥】 1.探索性問(wèn)題 探求某些點(diǎn)的具體位置,使得線面滿(mǎn)足平行或垂直關(guān)系,是一類(lèi)逆向思維的題目.一般可采用兩個(gè)方法:一是先假設(shè)存在,再去推理,下結(jié)論;二是運(yùn)用推理證明計(jì)算得出結(jié)論,或先利用條件特例得出結(jié)論,然后再根據(jù)條件給出證明或計(jì)算. 2. 如何求線面角 (1)利用面面垂直性質(zhì)定理,巧定垂足:由面面垂直的性質(zhì)定理,可以得到線面垂直,這就為線面角中的垂足的確定提供了捷徑. (2)利用三棱錐的等體積,省去垂足 在構(gòu)成線面角的直角三角形中,其中垂線段尤為關(guān)鍵.確定垂足,是常規(guī)方法.可是如果垂足位置不好確定,此時(shí)可以利用求點(diǎn)面距常用方法---等體積法.從而不用確定垂足的位置,照樣可以求出線面角.因?yàn)榇咕€段的長(zhǎng)度實(shí)際就是點(diǎn)面距h!利用三棱錐的等體積,只需求出h,然后利用進(jìn)行求解. (3)妙用公式,直接得到線面角 課本習(xí)題出現(xiàn)過(guò)這個(gè)公式:,如圖所示:.其中為直線AB與平面所成的線面角.這個(gè)公式在求解一些選擇填空題時(shí),可直接應(yīng)用.但是一定要注意三個(gè)角的位置,不能張冠李戴. (4)萬(wàn)能方法,空間向量求解不用找角 設(shè)AB是平面的斜線,BO是平面的垂線,AB與平面所成的角,向量與的夾角,則. 3.如何求二面角 (1)直接法.直接法求二面角大小的步驟是:一作(找)、二證、三計(jì)算.即先作(找)出表示二面角大小的平面角,并證明這個(gè)角就是所求二面角的平面角,然后再計(jì)算這個(gè)角的大小. 用直接法求二面角的大小,其關(guān)鍵是確定表示二面角大小的平面角.而確定其平面角,可從以下幾個(gè)方面著手:①利用三垂線定理(或三垂線定理的逆定理)確定平面角;②利用與二面角的棱垂直的平面確定平面角;③利用定義確定平面角; (2)射影面積法.利用射影面積公式= ;此方法常用于無(wú)棱二面角大小的計(jì)算;對(duì)于無(wú)棱二面角問(wèn)題還有一條途徑是設(shè)法作出它的棱,作法有“平移法”“延伸平面法”等. 法二:設(shè),是二面角的兩個(gè)半平面的法向量,其方向一個(gè)指向內(nèi)側(cè),另一個(gè)指向外側(cè)(同等異補(bǔ)), 則二面角的平面角 4.如何建立適當(dāng)?shù)淖鴺?biāo)系 根據(jù)幾何體本身的幾何性質(zhì),恰當(dāng)建立空間直角坐標(biāo)系最為關(guān)鍵,如果坐標(biāo)系引入的恰當(dāng),合理,即能夠容易確定點(diǎn)的坐標(biāo),需要總結(jié)一些建系方法.常見(jiàn)建系方法: (1)借助三條兩兩相交且垂直的棱為坐標(biāo)軸,如正方體,長(zhǎng)方體等規(guī)則幾何體,一般選擇三條線為三個(gè)坐標(biāo)軸,如圖1、2; (2)借助面面垂直的性質(zhì)定理建系,若題目中出現(xiàn)側(cè)面和底面垂線的條件,一般利用此條件添加輔助線,確定z軸,如圖3; (3)借助棱錐的高線建系等.對(duì)于正棱錐,利用定點(diǎn)在底面的射影為底面的中心,可確定z軸,然后在底面確定互相垂直的直線分別為x,y軸.如圖4. 5.如何確定平面的法向量 (1)首先觀察是否與存在于面垂直的法向量,若有可直接確定,若不存在,轉(zhuǎn)化為待定系數(shù)法; (2)待定系數(shù)法:由于法向量沒(méi)有規(guī)定長(zhǎng)度,僅規(guī)定了方向,所以有一個(gè)自由度,于是可把法向量的某個(gè)坐標(biāo)設(shè)為1,再求另兩個(gè)坐標(biāo).由于平面法向量是垂直于平面的向量,所以取平面的兩條相交向量,設(shè)由解方程組求得. 6. 向量為謀求解立體幾何的探索性問(wèn)題 空間向量最合適于解決立體幾何中探索性問(wèn)題,它無(wú)需進(jìn)行復(fù)雜繁難的作圖、論證、推理,只需通過(guò)坐標(biāo)運(yùn)算進(jìn)行判斷,在解題過(guò)程中,往往把“是否存在”問(wèn)題,轉(zhuǎn)化為“點(diǎn)的坐標(biāo)是否有解,是否有規(guī)定范圍的解”等,所以使問(wèn)題的解集更加簡(jiǎn)單、有效,應(yīng)善于運(yùn)用這一方法解題. 1. 【福建泉州xx年畢業(yè)班質(zhì)量檢查】在四面體中,若, , ,則直線與所成角的余弦值為( ) A. B. C. D. 【答案】D 2. 【四川省成都市xx屆高中第三次診】在我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱(chēng)為鱉臑.如圖,在鱉臑中,平面,且,則異面直線與所成角的余弦值為(?。? A. B. C. D. 【答案】A 【解析】由題意,可補(bǔ)形成正方體如下圖: 所以異面直線與所成角就是與所以角,而為直角三角形,所以所成角為,。選A. 3.【xx屆湖南省郴州市高三第四次質(zhì)檢】如圖,矩形中,,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成(平面).若、分別為線段、的中點(diǎn),則在翻轉(zhuǎn)過(guò)程中,下列說(shuō)法錯(cuò)誤的是( ) A. 與平面垂直的直線必與直線垂直 B. 異面直線與所成角是定值 C. 一定存在某個(gè)位置,使 D. 三棱錐外接球半徑與棱的長(zhǎng)之比為定值 【答案】C 【解析】取CD的中點(diǎn)F,連BF,MF,如下圖:可知面MBF//,所以A對(duì)。取中點(diǎn)G,可知,如下圖,可知B對(duì)。點(diǎn)A關(guān)于直線DE的對(duì)為F,則面,即過(guò)O與DE垂直的直線在平面上。故C錯(cuò)。三棱錐外接球的球心即為O點(diǎn),所以外接球半徑為。故D對(duì)。選C 4. 【廣西桂林市xx屆高三適應(yīng)性】正四面體中, 是棱的中點(diǎn), 是點(diǎn)在底面內(nèi)的射影,則異面直線與所成角的余弦值為( ) A. B. C. D. 【答案】B 【解析】如圖,設(shè)正四面體的棱長(zhǎng)是1,則,高,設(shè)點(diǎn)在底面內(nèi)的射影是,則,所以即為所求異面直線所成角,則,應(yīng)選答案B。 5. 【重慶市xx屆高三高考適應(yīng)】四棱錐的底面為平行四邊形,且,記平面與平面的交線為,平面與平面的交線為,則與所成的銳角的余弦值為( ) A. B. C. D. 【答案】B 【解析】分別過(guò)頂點(diǎn)P作, ,則直線MP為平面PAD與平面PBC的交線,即為m, 直線NP為平面PAB與平面PDC的交線,即為n,所以AB與BC所成的角即為m與n所成的角,在中, ,所以m與n所成的銳角的余弦值為 ,選B. 6. 【河北省衡水中學(xué)xx屆三摸】已知兩平行平面間的距離為,點(diǎn),點(diǎn),且,若異面直線與所成角為60,則四面體的體積為_(kāi)_________. 【答案】6 【解析】設(shè)平面ABC與平面交線為CE,取 ,則 7. 【河北省xx屆衡水中學(xué)押題卷III】如圖所示,在棱長(zhǎng)為2的正方體中, , 分別是, 的中點(diǎn),那么異面直線和所成角的余弦值等于__________. 【答案】 8. 【江蘇省徐州市xx屆高三信息卷】在三棱柱中, 平面, , , ,點(diǎn)在棱上,且.建立如圖所示的空間直角坐標(biāo)系. (1)當(dāng)時(shí),求異面直線與的夾角的余弦值; (2)若二面角的平面角為,求的值. 【解析】(1)易知, , .因?yàn)椋?,所以,當(dāng)時(shí), .所以, .所以, .故異面直線與的夾角的余弦值為. (2)由可知, ,所以,由(1)知, . 設(shè)平面的法向量為,則 即 令,解得, ,所以平面的一個(gè)法向量為. 設(shè)平面的法向量為,則 即 令,解得, ,所以平面的一個(gè)法向量為. 因?yàn)槎娼堑钠矫娼菫椋?,即,解得或(舍),故的值為? 9. 【遼寧省莊河市xx屆高三四?!咳鐖D,四棱錐中,底面是矩形,平面 平面,且是邊長(zhǎng)為的等邊三角形, ,點(diǎn)是的中點(diǎn). (1)求證: 平面 ; (2)點(diǎn) 在 上,且滿(mǎn)足 ,求直線與平面所成角的正弦值. 【解析】(1)連 交 于點(diǎn), 連 ,因?yàn)樗倪呅?是矩形,所以點(diǎn)是 的中點(diǎn),又點(diǎn) 是 的中點(diǎn), ,又 平面 平面 ,所以平面. (2)取 的中點(diǎn),則 ,又平面 底面,平面 底面 ,故平面,連接 ,在 中, ,所以在 中, ,以 為原點(diǎn), 所在直線分別為 軸, 軸, 軸建立空間直角坐標(biāo)系,則,設(shè),則由 得 ,即,設(shè)平面的法向量 ,則 ,得 ,令 ,則 ,故 ,又 ,設(shè)直線與平面所成角為 ,則 ,故直線與平面所成角的正弦值為 . 10. 【浙江省嘉興市xx屆高三適應(yīng)性考試】如圖,在三棱錐中, 底面, , , , 分別是, 的中點(diǎn), 在上,且. (1)求證: 平面; (2)在線段上上是否存在點(diǎn),使二面角 的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由. 【解析】(1)由, ,是的中點(diǎn),得.因?yàn)榈酌妫裕? 在中, ,所以.因此,又因?yàn)椋?,則,即. 因?yàn)榈酌?,所以,又,所以底面,則.又,所以平面. (3)方法二:假設(shè)滿(mǎn)足條件的點(diǎn)存在,并設(shè).以為坐標(biāo)原點(diǎn),分別以, , 為, , 軸建立空間直線坐標(biāo)系,則, , ,.由得.所以, , . 設(shè)平面的法向量為,則,即,取,得, ,即.設(shè)平面的法向量為,則,即,取,得, ,即.由二面角的大小為,得,化簡(jiǎn)得,又,求得. 于是滿(mǎn)足條件的點(diǎn)存在,且. 11. 【xx年湖南師大附中高三三?!咳鐖D,若Ω是長(zhǎng)方體ABCD-A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1,則下列結(jié)論中不正確的是( ) A.EH∥FG B.四邊形EFGH是矩形 C.Ω是棱柱 D.四邊形EFGH可能為梯形 【答案】D 【解析】假設(shè)平面的法向量為,則有,又因?yàn)?,所以,,且不是面的法向量,由,可知,,則,可見(jiàn)四邊形是矩形,所以A,B,C選項(xiàng)都正確,正確的選項(xiàng)為D. 12. 【xx屆河南省禹州市名校高三三?!吭诹庑沃校?,將沿折起到的位置,若二面角的大小為,則三棱錐的外接球的體積為( ) A. B. C. D. 【答案】A 【解析】設(shè)分別是等邊三角形的外心,則畫(huà)出圖像如下圖所示,由圖象可知,,故, ,外接球體積為. 13. 【xx屆山西省太原市高三下第三次模擬】在正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面,則與平面所成角的正切值的取值范圍是 . 【答案】 【解析】建立如所示的坐標(biāo)系,則,設(shè),平面的法向量為,則,所以,即,令,則,所以.又因?yàn)槠矫?所以,即,也即,所以.由于是平面的一個(gè)法向量,且,所以,記與平面所成角為,則,所以,因?yàn)?所以. 14. 【xx屆寧夏石嘴山三中高三下四?!咳鐖D,中,是的中點(diǎn),,,將沿折起,使點(diǎn)到達(dá)點(diǎn). (1)求證:; (2)當(dāng)三棱錐的體積最大時(shí),試問(wèn)在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?若存在,求出點(diǎn)的位置;若- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué) 專(zhuān)題8.3 空間角與綜合問(wèn)題試題 2019 2020 年高 數(shù)學(xué) 專(zhuān)題 8.3 空間 綜合 問(wèn)題 試題
鏈接地址:http://weibangfood.com.cn/p-2845881.html