歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

高中數(shù)學 第一章 導數(shù)及其應用 第二章 推理與證明學業(yè)質量標準檢測 新人教A版選修22

  • 資源ID:38208182       資源大小:142KB        全文頁數(shù):9頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。

高中數(shù)學 第一章 導數(shù)及其應用 第二章 推理與證明學業(yè)質量標準檢測 新人教A版選修22

第一、二章 學業(yè)質量標準檢測 時間120分鐘,滿分150分. 一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中只有一個是符合題目要求的) 1.設<<0,則在①a2>b2;②a+b>2;③ab<b2;④a2+b2>|a|+|b|.這4個不等式中恒成立的有( B ) A.0個        B.1個 C.2個 D.3個 [解析] ∵<<0,∴0>a>b,∴a2<b2,ab<b2,②④顯然不正確. 2.已知函數(shù)f(x)=-x3+ax2-x-1在(-∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍是( D ) A.(-∞,-),∪(,+∞)    B.(-,) C.(-∞,-]∪[,+∞)    D.[-,] [解析] f ′(x)=-3x2+2ax-1,∵f(x)在(-∞,+∞)上是單調(diào)函數(shù),且f ′(x)的圖象是開口向下的拋物線,∴f ′(x)≤0恒成立,∴Δ=4a2-12≤0,∴-≤a≤,故選D. 3.(2018淄博三模)在平面幾何里有射影定理:設三角形ABC的兩邊AB⊥AC,D是A點在BC上的射影,則AB2=BDBC.拓展到空間,在四面體A-BCD中,AD⊥面ABC,點O是A在面BCD內(nèi)的射影,且O在△BCD內(nèi),類比平面三角形射影定理,得出正確的結論是( A ) A.(S△ABC)2=S△BCOS△BCD B.(S△ABD)2=S△BODS△BOC C.(S△ADC)2=S△DOCS△BOC D.(S△BDC)2=S△ABDS△ABC [解析] 由已知在平面幾何中, 若△ABC中,AB⊥AC,AE⊥BC,E是垂足, 則AB2=BDBC, 我們可以類比這一性質,推理出: 若三棱錐A-BCD中,AD⊥面ABC,AO⊥面BCD,O為垂足, 則(S△ABC)2=S△BOCS△BDC. 故選A. 4.下列代數(shù)式(其中k∈N*)能被9整除的是( D ) A.6+67k B.2+7k-1 C.2(2+7k+1) D.3(2+7k) [解析] 特值法:當k=1時,顯然只有3(2+7k)能被9整除,故選D. 證明如下: 當k=1時,已驗證結論成立, 假設當k=n(n∈N*)時,命題成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36. ∵3(2+7n)能被9整除,36能被9整除, ∴21(2+7n)-36能被9整除, 這就是說,k=n+1時命題也成立. 故命題對任何k∈N*都成立. 5.函數(shù)f(x)在其定義域內(nèi)可導,其圖象如圖所示,則導函數(shù)y=f ′(x)的圖象可能為( C ) [解析] 由圖象知,f(x)在x<0時,圖象增→減→增,x>0時,單調(diào)遞增,故f ′(x)在x<0時,其值為+→-→+,在x>0時為+,故選C. 6.如果1N能拉長彈簧1cm,為了將彈簧拉長6cm,所耗費的功為( A ) A.0.18J B.0.26J C.0.12J D.0.28J [解析] 設F(x)=kx,當F(x)=1時,x=0.01m,則k=100,∴W=∫100xdx=50x2|=0.18. 7.定義一種運算“*”;對于自然數(shù)n滿足以下運算性質:( A ) (i)1]B.n+1 C.n-1 D.n2 [解析] 令an=n*1,則由(ii)得,an+1=an+1,由(i)得,a1=1, ∴{an}是首項a1=1,公差為1的等差數(shù)列,∴an=n,即n*1=n,故選A. 8.已知f(n)=+++…+,則( D ) A.f(n)中共有n項,當n=2時,f(2)=+ B.f(n)中共有n+1項,當n=2時,f(2)=++ C.f(n)中共有n2-n項,當n=2時,f(2)=+ D.f(n)中共有n2-n+1項,當n=2時,f(2)=++ [解析] 項數(shù)為n2-(n-1)=n2-n+1,故應選D. 9.已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f ′(x)的零點所在的區(qū)間是( B ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) [解析] 由題可知g(x)=lnx-,∵g(1)=-1<0,g(2)=ln2-=ln2-ln>0,∴選B. 10.已知c>1,a=-,b=-,則正確的結論是( B ) A.a(chǎn)>b B.a(chǎn)<b C.a(chǎn)=b D.a(chǎn)、b大小不定 [解析] a=-=, b=-=, 因為>>0,>>0, 所以+>+>0,所以a<b. 11.已知函數(shù)f(x)=x3+mx2+x的兩個極值點分別為x1、x2,且0<x1<1<x2,點P(m,n)表示的平面區(qū)域內(nèi)存在點(x0,y0)滿足y0=loga(x0+4),則實數(shù)a的取值范圍是( B ) A.(0,)∪(1,3) B.(0,1)∪(1,3) C.(,1)∪(1,3] D.(0,1)∪[3,+∞) [解析] f ′(x)=x2+mx+,由條件知,方程f ′(x)=0的兩實根為x1、x2且0<x1<1<x2, ∴∴∴ 由得∴ 由y0=loga(x0+4)知,當a>1時,1<y0<loga3,∴1<a<3;當0<a<1時,y0=loga(x0+4)>loga3,由于y0>1,loga3<0,∴對?a∈(0,1),此式都成立,從而0<a<1,綜上知0<a<1或1<a<3,故選B. 12.設函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對任意的自然數(shù)均有xn+1=f(xn),則x2017=( B ) x 1 2 3 4 5 f(x) 4 1 3 5 2 A.1 B.2 C.4 D.5 [解析] x1=f(x0)=f(5)=2, x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,數(shù)列{xn}是周期為4的數(shù)列,所以x2017=x1=2,故應選B. 二、填空題(本大題共4個小題,每小題5分,共20分,把正確答案填在題中橫線上) 13.已知1+23+332+432+…+n3n-1=3n(na-b)+c對一切n∈N*都成立,則a=,b=,c=. [解析] 令n=1、2、3,得 所以a=,b=c=. 14.已知f(x)=x3+3x2+a(a為常數(shù)),在[-3,3]上有最小值3,那么在[-3,3]上f(x)的最大值是57. [解析] f ′(x)=3x2+6x=3x(x+2),當x∈[-3,-2)和x∈(0,3]時,f ′(x)>0,f(x)單調(diào)遞增,當x∈(-2,0)時,f ′(x)<0,f(x)單調(diào)遞減,∴極大值為f(-2)=a+4,極小值為f(0)=a,又f(-3)=a,f(3)=54+a,由條件知a=3,∴最大值為f(3)=54+3=57. 15.函數(shù)f(x)=ax3-3x在區(qū)間(-1,1)上為單調(diào)減函數(shù),則a的取值范圍是a≤1. [解析] f ′(x)=3ax2-3,∵f(x)在(-1,1)上為單調(diào)減函數(shù),∴f ′(x)≤0在(-1,1)上恒成立, 即3ax2-3≤0在(-1,1)上恒成立, ∴a≤,∵x∈(-1,1),∴a≤1. 16.(2017洛陽高二檢測)觀察下列等式:=1-,+=1-,++=1-,…,由以上等式推測到一個一般的結論:對于n∈N*,++…+=1-. [解析] 由已知中的等式:=1- +=1-, ++=1-,…, 所以對于n∈N*,++…+=1-. 三、解答題(本大題共6個大題,共70分,解答應寫出文字說明,證明過程或演算步驟) 17.(本題滿分10分)已知:a、b、c∈R,且a+b+c=1. 求證:a2+b2+c2≥. [證明] 由a2+b2≥2ab,及b2+c2≥2bc,c2+a2≥2ca. 三式相加得a2+b2+c2≥ab+bc+ca. ∴3(a2+b2+c2)≥(a2+b2+c2)+2(ab+bc+ca)=(a+b+c)2. 由a+b+c=1,得3(a2+b2+c2)≥1, 即a2+b2+c2≥. 18.(本題滿分12分)已知函數(shù)f(x)=x3+ax2-3bx+c(b>0),且g(x)=f(x)-2是奇函數(shù). (1)求a、c的值; (2)若函數(shù)f(x)有三個零點,求b的取值范圍. [解析] (1)∵g(x)=f(x)-2是奇函數(shù), ∴g(-x)=-g(x)對x∈R成立, ∴f(-x)-2=-f(x)+2對x∈R成立, ∴ax2+c-2=0對x∈R成立, ∴a=0且c=2. (2)由(1)知f(x)=x3-3bx+2(b>0), ∴f ′(x)=3x2-3b=3(x-)(x+), 令f ′(x)=0得x=, x (-∞,-) - (-,) (,+∞) f ′(x) + 0 - 0 + f(x) 增 極大值 減 極小值 增 依題意有∴b>1, 故正數(shù)b的取值范圍是(1,+∞). 19.(本題滿分12分)已知函數(shù)f(x)=x3-2ax2+bx,其中a、b∈R,且曲線y=f(x)在點(0,f(0))處的切線斜率為3. (1)求b的值; (2)若函數(shù)f(x)在x=1處取得極大值,求a的值. [解析] (1)f ′(x)=a2x2-4ax+b, 由題意f ′(0)=b=3. (2)∵函數(shù)f(x)在x=1處取得極大值, ∴f ′(1)=a2-4a+3=0,解得a=1或a=3. ①當a=1時,f ′(x)=x2-4x+3=(x-1)(x-3), x、f ′(x)、f(x)的變化情況如下表: x (-∞,1) 1 (1,3) 3 (3,+∞) f ′(x) + 0 - 0 + f(x)  極大值  極小值  由上表知,函數(shù)f(x)在x=1處取得極大值,符合題意. ②當a=3時,f ′(x)=9x2-12x+3=3(3x-1)(x-1), x、f ′(x)、f(x)的變化情況如下表: x (-∞,) (,1) 1 (1,+∞) f ′(x) + 0 - 0 + f(x)  極大值  極小值  由上表知,函數(shù)f(x)在x=1處取得極小值,不符合題意. 綜上所述,若函數(shù)f(x)在x=1處取得極大值,a的值為1. 20.(本題滿分12分)若x>0,y>0,用分析法證明:(x2+y2)>(x3+y3). [證明] 要證(x2+y2)>(x3+y3), 只需證(x2+y2)3>(x3+y3)2, 即證x6+3x4y2+3x2y4+y6>x6+2x3y3+y6, 即證3x4y2+3y4x2>2x3y3. 又因為x>0,y>0,所以x2y2>0, 故只需證3x2+3y2>2xy. 而3x2+3y2>x2+y2≥2xy成立, 所以(x2+y2)>(x3+y3)成立. 21.(本題滿分12分)已知函數(shù)f(x)=ax+(a>1). (1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù); (2)用反證法證明方程f(x)=0沒有負數(shù)根. [解析] (1)證法1:任取x1、x2∈(-1,+∞),不妨設x1<x2,則x2-x1>0,ax2-x1>1且ax1>0, ∴ax2-ax1=ax1(ax2-x1-1)>0, 又∵x1+1>0,x2+1>0, ∴- = =>0, 于是f(x2)-f(x1)=ax2-ax1+->0, 故函數(shù)f(x)在(-1,+∞)上為增函數(shù). 證法2:f ′(x)=axlna+=axlna+ ∵a>1,∴l(xiāng)na>0,∴axlna+>0, f ′(x)>0在(-1,+∞)上恒成立, 即f(x)在(-1,+∞)上為增函數(shù). (2)解法1:設存在x0<0(x0≠-1)滿足f(x0)=0, 則ax0=-,且0<ax0<1. ∴0<-<1,即<x0<2,與假設x0<0矛盾. 故方程f(x)=0沒有負數(shù)根. 解法2:設x0<0(x0≠-1), ①若-1<x0<0,則<-2,ax0<1,∴f(x0)<-1. ②若x0<-1則>0,ax0>0,∴f(x0)>0. 綜上,x<0(x≠-1)時,f(x)<-1或f(x)>0,即方程f(x)=0無負數(shù)根. 22.(本題滿分14分)設a>1,函數(shù)f(x)=(1+x2)ex-a. (1)求f(x)的單調(diào)區(qū)間; (2)證明:f(x)在(-∞,+∞)上僅有一個零點; (3)若曲線y=f(x)在點P處的切線與x軸平行,且在點M(m,n)處的切線與直線OP平行(O是坐標原點),證明:m≤-1. [解析] (1)依題f′(x)=(1+x2)′ex+(1+x2)(ex)′=(1+x)2ex≥0, ∴f(x)在(-∞,+∞)上是單調(diào)增函數(shù). (2)證明:∵a>1, ∴f(0)=1-a<0且f(a)=(1+a2)ea-a>1+a2-a>0, ∴f(x)在(0,a)上有零點. 又由(1)知f(x)在(-∞,+∞)上是單調(diào)增函數(shù), ∴f(x)在(-∞,+∞)上僅有一個零點. (3)證明:令f′(x)=(1+x)2ex=0,得x=-1, 而f(-1)=[1+(-1)2]e-1-a=-a, 故P. 直線OP的斜率kOP==a-, 而f(x)在點M(m,n)處的切線斜率為 f′(m)=(1+m)2em. 由平行關系知-+a=(1+m)2em. 要證m≤-1, 即證(m+1)3≤a-=(1+m)2em, 即m+1≤em. 令g(m)=em-m-1,則g′(m)=em-1. 當m<0時,g′(m)<0,g(m)在(-∞,0)上單調(diào)遞減; 當m>0時,g′(m)>0,g(m)在(0,+∞)上單調(diào)遞增. 故g(m)在(-∞,+∞)上的最小值為g(0)=0, 即g(m)=em-m≥0在(-∞,+∞)上恒成立, 于是m+1≤em,即m≤-1得證. 我國經(jīng)濟發(fā)展進入新常態(tài),需要轉變經(jīng)濟發(fā)展方式,改變粗放式增長模式,不斷優(yōu)化經(jīng)濟結構,實現(xiàn)經(jīng)濟健康可持續(xù)發(fā)展進區(qū)域協(xié)調(diào)發(fā)展,推進新型城鎮(zhèn)化,推動城鄉(xiāng)發(fā)展一體化因:我國經(jīng)濟發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實挑戰(zhàn)。

注意事項

本文(高中數(shù)學 第一章 導數(shù)及其應用 第二章 推理與證明學業(yè)質量標準檢測 新人教A版選修22)為本站會員(仙***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!