當前位置:
首頁 > 圖紙專區(qū) > 高中資料 > (浙江專用)2020版高考數(shù)學一輪復習 專題3 導數(shù)及其應用 第20練 利用導數(shù)研究不等式問題練習(含解析).docx
(浙江專用)2020版高考數(shù)學一輪復習 專題3 導數(shù)及其應用 第20練 利用導數(shù)研究不等式問題練習(含解析).docx
上傳人:xt****7
文檔編號:3925501
上傳時間:2019-12-29
格式:DOCX
頁數(shù):5
大?。?6.32KB
《(浙江專用)2020版高考數(shù)學一輪復習 專題3 導數(shù)及其應用 第20練 利用導數(shù)研究不等式問題練習(含解析).docx》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學一輪復習 專題3 導數(shù)及其應用 第20練 利用導數(shù)研究不等式問題練習(含解析).docx(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第20練 利用導數(shù)研究不等式問題
[基礎保分練]
1.設f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)>0,且f(-3)=0,則不等式f(x)g(x)<0的解集是( )
A.(-3,0)∪(3,+∞) B.(-∞,-3)∪(0,3)
C.(-∞,-3)∪(3,+∞) D.(-3,0)∪(0,3)
2.設f(x)是定義在R上的奇函數(shù),且f(1)=0,當x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( )
A.(-∞,0)∪(0,1) B.(-∞,-1)∪(0,1)
C.(-1,0)∪(1,+∞) D.(-1,0)∪(0,1)
3.已知函數(shù)f(x)=x-(e-1)lnx,則不等式f(ex)<1的解集為( )
A.(0,1) B.(1,+∞)
C.(0,e) D.(e,+∞)
4.(2019浙江臺州中學模擬)當0
x
6.(2019諸暨質(zhì)檢)定義在R上的函數(shù)f(x)滿足:f′(x)+f(x)>1,f(0)=5,f′(x)是f(x)的導函數(shù),則不等式ex[f(x)-1]>4(其中e為自然對數(shù)的底數(shù))的解集為( )
A.(0,+∞) B.(-∞,0)∪(3,+∞)
C.(-∞,0)∪(1,+∞) D.(3,+∞)
7.已知函數(shù)f(x)=xlnx+x(x-a)2(a∈R).若存在x∈,使得f(x)>xf′(x)成立,則實數(shù)a的取值范圍是( )
A. B.
C.(,+∞) D.(3,+∞)
8.已知函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導函數(shù),滿足f(x)>0且f(x)+f′(x)<0(f′(x)為函數(shù)f(x)的導函數(shù)),若0(a+1)f(b) B.f(b)>(1-a)f(a)
C.af(a)>bf(b) D.af(b)>bf(a)
9.設函數(shù)f(x)=x3+mx2-3m2x+2m-1(m>0).若存在f(x)的極大值點x0,滿足x+[f(0)]2<10m2,則實數(shù)m的取值范圍是________.
10.已知x∈,y=f(x)-1為奇函數(shù),f′(x)+f(x)tanx>0,則不等式f(x)>cosx的解集為________.
[能力提升練]
1.已知函數(shù)f(x)=-ax,x∈(0,+∞),當x2>x1時,不等式-<0恒成立,則實數(shù)a的取值范圍為( )
A.(-∞,e] B.(-∞,e)
C. D.
2.設函數(shù)f(x)是定義在(-∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2017)2f(x+2017)-9f(-3)>0的解集為( )
A.(-∞,-2020) B.(-∞,-2014)
C.(-2014,0) D.(-2020,0)
3.(2019浙江五校聯(lián)考)已知函數(shù)f(x)的定義域為R,其圖象關(guān)于直線x=1對稱,其導函數(shù)為f′(x),當x<1時,2f(x)+(x-1)f′(x)<0,那么不等式(x+1)2f(x+2)>f(2)的解集為( )
A.(-∞,0) B.(-∞,-2)
C.(-2,0) D.(-∞,-2)∪(0,+∞)
4.已知函數(shù)f(x)=+xlnx,g(x)=x3-x2-5,若對任意的x1,x2∈,都有f(x1)-g(x2)≥2成立,則實數(shù)a的取值范圍是( )
A.(0,+∞) B.[1,+∞)
C.(-∞,0) D.(-∞,-1]
5.(2019杭州質(zhì)檢)已知函數(shù)f(x)=x2+2x+a,g(x)=lnx-2x,如果存在x1∈,使得對任意的x2∈,都有f(x1)≤g(x2)成立,則實數(shù)a的取值范圍是________________.
6.已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(2)=7,且f(x)的導函數(shù)f′(x)<3,則不等式f(lnx)>3lnx+1的解集為________.
答案精析
基礎保分練
1.B 2.D 3.A 4.D 5.C 6.A 7.C 8.C 9. 10.
能力提升練
1.D [不等式-<0,
即<0,
結(jié)合x2>x1>0可得x1f(x1)-x2f(x2)<0恒成立,
即x2f(x2)>x1f(x1)恒成立,
構(gòu)造函數(shù)g(x)=xf(x)=ex-ax2,由題意可知函數(shù)g(x)在定義域內(nèi)單調(diào)遞增,
故g′(x)=ex-2ax≥0恒成立,
即a≤恒成立,
令h(x)=(x>0),
則h′(x)=,
當01時,h′(x)>0,h(x)單調(diào)遞增,
則h(x)的最小值為h(1)==,
據(jù)此可得實數(shù)a的取值范圍為.]
2.A [根據(jù)題意,令g(x)=x2f(x),x∈(-∞,0),故g′(x)=x[2f(x)+xf′(x)],
而2f(x)+xf′(x)>x2>0,
故當x<0時,g′(x)<0,g(x)單調(diào)遞減,
(x+2 017)2f(x+2 017)-9f(-3)>0,
即(x+2 017)2f(x+2 017)>(-3)2f(-3),則有g(shù)(x+2 017)>g(-3),則有x+2 017<-3,解得x<-2 020,
即不等式(x+2 017)2f(x+2 017)-9f(-3)>0的解集為(-∞,-2 020).故選A.]
3.C [由已知2f(x)+(x-1)f′(x)<0可構(gòu)造函數(shù)φ(x)=(x-1)2f(x),則φ′(x)=2(x-1)f(x)+(x-1)2f′(x)=(x-1)[2f(x)+(x-1)f′(x)],當x<1時,φ′(x)>0,因而φ(x)在x<1時為增函數(shù),點P(x0,y0)關(guān)于直線x=1的對稱點為P′(2-x0,y0),由于函數(shù)f(x)的圖象關(guān)于直線x=1對稱,則f(x0)=f(2-x0),而φ(2-x0)=(2-x0-1)2f(2-x0)=(x0-1)2f(x0)=φ(x0),因而函數(shù)φ(x)的圖象也關(guān)于直線x=1對稱,因而在x>1時φ(x)為減函數(shù),不等式(x+1)2f(x+2)>f(2)可化為φ(x+2)>φ(2),因而|x+2-1|<1,解得-20,h(x)單調(diào)遞增;
當x∈(1,2)時,h′(x)<0,h(x)單調(diào)遞減,所以h(x)≤h(1)=1,即a≥1.]
5.
解析 g′(x)=-2=≤0,
x∈,∴g(x)在上單調(diào)遞減,∴g(x)min=g(2)=ln2-4.
∵f(x)=x2+2x+a=(x+1)2+a-1,
∴f(x)在上單調(diào)遞增,
∴f(x)min=f=+a.
∵存在x1∈,使得對任意的x2∈,都有f(x1)≤g(x2)成立,
∴+a≤ln2-4,∴a≤ln2-.
6.(0,e2)
解析 設t=lnx,
則不等式f(lnx)>3lnx+1等價為f(t)>3t+1,設g(x)=f(x)-3x-1,
則g′(x)=f′(x)-3,
∵f(x)的導函數(shù)f′(x)<3,
∴g′(x)=f′(x)-3<0,
函數(shù)g(x)=f(x)-3x-1單調(diào)遞減,
∵f(2)=7,∴g(2)=f(2)-32-1=0,
則此時g(t)=f(t)-3t-1>0=g(2),解得t<2,即f(t)>3t+1的解為t<2,
所以lnx<2,解得03lnx+1的解集為(0,e2).
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
浙江專用2020版高考數(shù)學一輪復習
專題3
導數(shù)及其應用
第20練
利用導數(shù)研究不等式問題練習含解析
浙江
專用
2020
高考
數(shù)學
一輪
復習
專題
導數(shù)
及其
應用
20
利用
研究
不等式
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://weibangfood.com.cn/p-3925501.html