《高三數(shù)學(xué)理33個(gè)黃金考點(diǎn)總動(dòng)員 考點(diǎn)09 導(dǎo)數(shù)的幾何意義解析版 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)理33個(gè)黃金考點(diǎn)總動(dòng)員 考點(diǎn)09 導(dǎo)數(shù)的幾何意義解析版 Word版含解析(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
高三數(shù)學(xué)33個(gè)黃金考點(diǎn)總動(dòng)員
【考點(diǎn)剖析】
1.最新考試說明:
1.了解導(dǎo)數(shù)概念的實(shí)際背景;
2. 理解導(dǎo)數(shù)的幾何意義;
3. 會(huì)用課本給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單的函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如的導(dǎo)數(shù))
2.命題方向預(yù)測(cè):
預(yù)計(jì)高考對(duì)本節(jié)內(nèi)容仍將堅(jiān)持考查導(dǎo)數(shù)的計(jì)算及其幾何意義,重點(diǎn)考查導(dǎo)數(shù)的幾何意義,在復(fù)習(xí)中應(yīng)予以關(guān)注.
3.課本結(jié)論總結(jié):
導(dǎo)數(shù)定義包含可導(dǎo)條件和導(dǎo)數(shù)概念兩層意思,在點(diǎn)處可導(dǎo)需滿足三個(gè)條件:①在點(diǎn)處及其附近有意義
2、;②左右極限存在,即與都存在;③左右極限相等,即,三個(gè)條件缺一不可.
用定義求導(dǎo)數(shù)的步驟如下“
(1)計(jì)算函數(shù)的增量;
(2)計(jì)算函數(shù)的增量與自變量增量的比值;
(3)計(jì)算極限
導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)就是曲線在點(diǎn)處的切線和斜率,即.
4.名師二級(jí)結(jié)論:
當(dāng)一個(gè)函數(shù)是多個(gè)函數(shù)復(fù)合而成時(shí),就按照從外層到內(nèi)層的原則進(jìn)行求導(dǎo),求導(dǎo)時(shí)要注意分清層次,防止求導(dǎo)不徹底,同時(shí),也要注意分析問題的具體特征,靈活恰當(dāng)選擇中間變量,同時(shí)注意可先化簡(jiǎn),再求導(dǎo),實(shí)際上,復(fù)合函數(shù)的求導(dǎo)法則,通常稱為鏈條法則,這是由于求導(dǎo)過程像鏈條一樣,必須一環(huán)一環(huán)套下去,而不能漏掉其中的任何一環(huán).
5.課本
3、經(jīng)典習(xí)題:
(1)新課標(biāo)A版選修2-2第6頁(yè),例1 將原油精煉為汽油、柴油、塑膠等各種不同產(chǎn)品,需要對(duì)原油進(jìn)行冷卻和加熱.如果在第時(shí),原油的溫度(單位:℃)為.計(jì)算第與第時(shí),原油溫度的瞬時(shí)變化率,并說明它們的意義.
【經(jīng)典理由】結(jié)合具體的實(shí)例,給出了結(jié)論:反映了原油溫度在時(shí)刻附近的變化情況,闡述了導(dǎo)數(shù)的意義:導(dǎo)數(shù)可以描述瞬時(shí)變化率.
(2) 新課標(biāo)A版選修2-2第17頁(yè),例4 求下列函數(shù)的導(dǎo)數(shù)(1);(2);(3)其中,均為常數(shù);
【解析】(1)函數(shù)可以看作函數(shù)和的復(fù)合函數(shù),根據(jù)復(fù)合函數(shù)求導(dǎo)法則有;(2)函數(shù)可以看作函數(shù)和的復(fù)合函數(shù),根據(jù)復(fù)合函數(shù)求導(dǎo)法則有;(3)函數(shù)可以看作函數(shù)和的復(fù)
4、合函數(shù),根據(jù)復(fù)合函數(shù)求導(dǎo)法則有.
【經(jīng)典理由】結(jié)合具體的例題,說明了復(fù)合函數(shù)求導(dǎo)的一般方法.
6.考點(diǎn)交匯展示:
(1)導(dǎo)數(shù)與函數(shù)圖象相結(jié)合
例1.【江蘇省蘇州市高三9月調(diào)研測(cè)試12】函數(shù)的圖象經(jīng)過四個(gè)象限的充要條件是 .
【答案】
【解析】由得:或,結(jié)合圖像可知函數(shù)的圖象經(jīng)過四個(gè)象限的充要條件是,即.
(2)導(dǎo)數(shù)與不等式相結(jié)合
例2. 【20xx高考新課標(biāo)2,理12】設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時(shí),,則使得成立的的取值范圍是( )
A. B.
C. D.
【答案】A
【考點(diǎn)分類】
熱點(diǎn)1 導(dǎo)數(shù)的
5、幾何意義
1. 【20xx高考重慶,理20(1)】 設(shè)函數(shù)
若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
【答案】,切線方程為.
2.【20xx江西高考理第14題】若曲線上點(diǎn)處的切線平行于直線,則點(diǎn)的坐標(biāo)是________.
【答案】
【解析】
試題分析:設(shè)切點(diǎn),則由得:,所以點(diǎn)的坐標(biāo)是.
3. 【20xx高考江蘇卷第11題】在平面直角坐標(biāo)系中,若曲線(為常數(shù))過點(diǎn),且該曲線在點(diǎn)處的切線與直線平行,則 .
【答案】
【解析】曲線過點(diǎn),則①,又,所以②,由①②解得所以.
4.【20xx高考廣東卷理第10題】曲線在點(diǎn)處的切線方程為
6、 .
【答案】或.
【解析】,所求切線的斜率為,
故所求切線的方程為,即.
【方法規(guī)律】導(dǎo)數(shù)運(yùn)算時(shí),要注意以下幾點(diǎn):
1. 盡可能的把原函數(shù)化為冪函數(shù)和的形式;
2. 遇到三角函數(shù)求導(dǎo)時(shí),往往要對(duì)原函數(shù)進(jìn)行化簡(jiǎn),從而可以減少運(yùn)算量;
3. 求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí),要合理地選擇中間變量.
【方法規(guī)律】曲線的切線的求法:
若已知曲線過點(diǎn),求曲線過點(diǎn)的切線則需分點(diǎn)是切點(diǎn)和不是切點(diǎn)兩種情況求解.
(1)點(diǎn)是切點(diǎn)的切線方程為.
(2)當(dāng)點(diǎn)不是切點(diǎn)時(shí)可分以下幾步完成:
第一步:設(shè)出切點(diǎn)坐標(biāo);
第二步:寫出過的切線方程為;
第三步:將點(diǎn)的坐標(biāo)代入切線方程求出;
第四步:將的
7、值代入方程可得過點(diǎn)的切線方程.
熱點(diǎn)2 導(dǎo)數(shù)的幾何意義的應(yīng)用
1.【普通高等學(xué)校招生全國(guó)統(tǒng)一考試(北京卷)理】設(shè)l為曲線C:在點(diǎn)(1,0)處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.
【答案】(1)的方程:;(2)詳見解析.
2..【20xx高考重慶理科第20題】已知函數(shù)的導(dǎo)函數(shù)為偶函數(shù),且曲線在點(diǎn)處的切線的斜率為.
(1)確定的值;
(2)若,判斷的單調(diào)性;
(3)若有極值,求的取值范圍.
【答案】(1);(2)增函數(shù);(3).
3. 【20xx高考廣東,理19】設(shè),函數(shù).
(1) 求的單調(diào)區(qū)間 ;
8、(2) 證明:在上僅有一個(gè)零點(diǎn);
(3) 若曲線在點(diǎn)處的切線與軸平行,且在點(diǎn)處的切線與直線平行(是坐標(biāo)原點(diǎn)),證明:.
【答案】(1);(2)見解析;(3)見解析.
∴ ,
∴ 即,
∴ .
【解題技巧】導(dǎo)數(shù)的應(yīng)用除研究切線方程外,還有許多應(yīng)用,如:
(1) 因?yàn)橛行┪锢砹?,如瞬時(shí)速度,瞬時(shí)加速度,瞬時(shí)功率,瞬時(shí)電流和瞬時(shí)感應(yīng)電動(dòng)勢(shì)等與導(dǎo)數(shù)有著直接或間接的關(guān)系,在解題時(shí)應(yīng)緊扣這些聯(lián)系來解決問題;
(2) 利用導(dǎo)數(shù)的性質(zhì)求解參數(shù)的取值范圍問題,解決這類問題的一般方法是待定系數(shù)法,即根據(jù)題設(shè)條件,利用導(dǎo)數(shù)工具所列出所需的方程或方程組,然后加以求解即可.
【易錯(cuò)點(diǎn)睛】利用
9、導(dǎo)數(shù)解決恒成立或存在性問題的基本思想是轉(zhuǎn)化成函數(shù)的最值問題,利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性求七最值,在過程中,通常會(huì)用到分離變量法或者含參討論以及構(gòu)造函數(shù).此外,在分析題目描述的問題是需分析清楚到底是恒成立問題還是存在性問題.
【熱點(diǎn)預(yù)測(cè)】
1.若函數(shù)的圖象在處的切線與圓相切,則的最大值是( )
A.4 B. C.2 D.
【答案】D
2.【高考沖刺關(guān)門卷新課標(biāo)全國(guó)卷(理)】設(shè)為實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為,且是偶函數(shù),則曲線在原點(diǎn)處的切線方程為( )
A. B. C. D.
【答案】B
【解析】由已知得,,因?yàn)槭桥己瘮?shù)
10、,故,故切線斜率
所以在原點(diǎn)處的切線方程為.
3. 【20xx全國(guó)2高考理第8題】設(shè)曲線在點(diǎn)處的切線方程為,則 ( )
A. 0 B. 1 C. 2 D. 3
【答案】D
【解析】因?yàn)?,所以切線的斜率為,解得,故選D.
4.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.
【答案】
【解析】,, 切線方程 ,即.
5.【河南省安陽(yáng)一中高三第一次月考】已知,為拋物線上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,2,過P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為_________.
【答案】.
6.曲線在處的切線
11、方程為 .
【答案】
【解析】
試題分析:根據(jù)題意切點(diǎn)的橫坐標(biāo)為0,因?yàn)榍悬c(diǎn)在曲線上且,所以切點(diǎn)坐標(biāo)為,對(duì)函數(shù)求導(dǎo)可得,又因?yàn)榍芯€的斜率為導(dǎo)函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值,所以切線的斜率為,則根據(jù)直線點(diǎn)斜式可以求的直線的方程為,故填.
7.若曲線在點(diǎn)處的切線平行于軸,則______.
【答案】
【解析】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義可知,∴.
8.【解析團(tuán)隊(duì)學(xué)易高考沖刺金卷36套(江蘇版)預(yù)測(cè)卷】已知向量,,若,則在處的切線方程為 .
【答案】
【解析】由已知,,時(shí),,即切點(diǎn)為.
又,所以,切線的斜率為,由直線方程的點(diǎn)斜式得所求切線方程為.
9.【高三原創(chuàng)預(yù)測(cè)卷理
12、科數(shù)學(xué)試卷4(安徽版)】已知偶函數(shù)在R上的任一取值都有導(dǎo)數(shù),且,則曲線在處的切線的斜率為 .
【答案】.
10.【山東高三數(shù)學(xué)預(yù)測(cè)卷(理科)】已知點(diǎn)在曲線(其中為自然對(duì)數(shù)的底數(shù))上,
為曲線在點(diǎn)處的切線的傾斜角,則的取值范圍是 .
【答案】
【解析】由導(dǎo)數(shù)的幾何意義,又因?yàn)?,所以,?
11.已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)當(dāng)a=-1時(shí),求f(x)的極值;
(2)若f(x)是區(qū)間內(nèi)的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(3)過坐標(biāo)原點(diǎn)可以作幾條直線與曲線y=f(x)相切?請(qǐng)說明理由
13、.
【答案】(1)有極小值,無(wú)極大值.;(2);(3)一條.
【解析】(1)當(dāng)時(shí),,所以在區(qū)間 內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,于是有極小值,無(wú)極大值,
(2)易知在區(qū)間內(nèi)單調(diào)遞增,∴由題意可得在內(nèi)無(wú)解,即或,解得實(shí)數(shù)的取值范圍是,
(3)設(shè)切點(diǎn),則切線方程為.
∵過原點(diǎn),所以,化簡(jiǎn)得(※).
設(shè),則,所以在區(qū)間內(nèi)單調(diào)遞增.
又,故方程(※)有唯一實(shí)根,從而滿足條件的切線只有一條.
12.【湖北省部分重點(diǎn)中學(xué)20xx-上學(xué)期高三起點(diǎn)考試21】已知為坐標(biāo)原點(diǎn),為函數(shù)圖像上一點(diǎn),記直線的斜率.[.Co
(1) 若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2) 當(dāng)時(shí),不等式恒成立,求
14、實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) .
∴ 從而,故在上單調(diào)遞增,
∴,實(shí)數(shù)的取值范圍是.
13.【20xx安慶二模】已知函數(shù)
(1)若有最值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若存在,使得曲線在與處的切線互相平行,求證.
【答案】(1);(2)詳見解析
14.【20xx高考新課標(biāo)1,理21】已知函數(shù)f(x)=.
(Ⅰ)當(dāng)a為何值時(shí),x軸為曲線 的切線;
(Ⅱ)用 表示m,n中的最小值,設(shè)函數(shù) ,討論h(x)零點(diǎn)的個(gè)數(shù).
【答案】(Ⅰ);(Ⅱ)當(dāng)或時(shí),由一個(gè)零點(diǎn);當(dāng)或時(shí),
有兩個(gè)零點(diǎn);當(dāng)時(shí),有三個(gè)零點(diǎn).
①若>0,即<<0,在(0,1)無(wú)零點(diǎn).
②若=0,即,則在(0,1)有唯一零點(diǎn);
③若<0,即,由于,,所以當(dāng)時(shí),在(0,1)有兩個(gè)零點(diǎn);當(dāng)時(shí),在(0,1)有一個(gè)零點(diǎn).…10分