新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理

上傳人:仙*** 文檔編號:40482398 上傳時間:2021-11-16 格式:DOC 頁數(shù):7 大小:1.25MB
收藏 版權(quán)申訴 舉報 下載
新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理_第1頁
第1頁 / 共7頁
新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理_第2頁
第2頁 / 共7頁
新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理》由會員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 【導(dǎo)與練】(新課標(biāo))20xx屆高三數(shù)學(xué)一輪復(fù)習(xí) 第5篇 第3節(jié) 等比數(shù)列課時訓(xùn)練 理 【選題明細表】 知識點、方法 題號 等比數(shù)列的判定及證明 3、15 等比數(shù)列的基本運算 4、6、8、11 等比數(shù)列的性質(zhì) 1、2、7、10 等比、等差數(shù)列的綜合 5、9、12 等比數(shù)列與其他知識綜合 5、13、14、16 基礎(chǔ)過關(guān) 一、選擇題 1.公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則a5等于( A ) (A)1 (B)2 (C)4 (D)8

2、 解析:a3a11=a72=16,數(shù)列{an}的各項都是正數(shù), 所以a7=4, 又a7=a5×22,所以a5=1. 2.(20xx高考重慶卷)對任意等比數(shù)列{an},下列說法一定正確的是( D ) (A)a1,a3,a9成等比數(shù)列 (B)a2,a3,a6成等比數(shù)列 (C)a2,a4,a8成等比數(shù)列 (D)a3,a6,a9成等比數(shù)列 解析:由等比數(shù)列的定義知選D. 3.已知數(shù)列{an}的前n項和Sn=3n+k(k為常數(shù)),那么下述結(jié)論正確的是( B ) (A)k為任意實數(shù)時,{an}是等比數(shù)列 (B)k=-1時,{an}是等比數(shù)列 (C)k=0時,{an}是等比數(shù)

3、列 (D){an}不可能是等比數(shù)列 解析:∵Sn=3n+k(k為常數(shù)), ∴a1=S1=3+k, n≥2時,an=Sn-Sn-1=3n+k-(3n-1+k)=2×3n-1, 當(dāng)k=-1時,a1=2滿足an=2×3n-1,{an}是等比數(shù)列, 當(dāng)k=0時,a1=3不滿足an=2×3n-1,{an}不是等比數(shù)列. 4.已知等比數(shù)列{an}的公比q=2,前n項和為Sn.若S3=72,則S6等于( B ) (A)312 (B)632 (C)63 (D)1272 解析:由S6-S3S3=q3, 即S6-7272=8, 得S6=632. 5.已知{an

4、}為等差數(shù)列,{bn}為等比數(shù)列,其公比q≠1且bi>0(i=1,2,…),若a1=b1,a11=b11,則( A ) (A)a6>b6 (B)a6=b6 (C)a6<b6 (D)a6<b6或a6>b6 解析:∵數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,a1=b1,a11=b11, ∴a1+a11=b1+b11,又bi>0(i=1,2,…) ∴2a6=b1+b11≥2b1b11=2b6, 又q≠1,且bi>0(i=1,2,…), ∴b1≠b11, ∴a6>b6. 二、填空題 6.已知等比數(shù)列{an}的公比為正數(shù),且a2&

5、#183;a6=9a4,a2=1,則a1=    .  解析:由a2·a6=9a4得a2(a2q4)=9a2q2, 解得q2=9, 所以q=3或q=-3(舍去), 所以由a2=a1q, 得a1=a2q=13. 答案:13 7.(20xx高考廣東卷)若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5,則ln a1+ln a2+…+ln a20=    .  解析:ln a1+ln a2+…+ln a20=ln a1a2…a20, 而a1a20=a2a19=…=a9a12=a10a11=e5, 所以ln a1a2…a20=ln(e

6、5)10=50. 答案:50 8.(20xx高考遼寧卷)已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項和,若a1,a3是方程x2-5x+4=0的兩個根,則S6=    .  解析:依題意a1+a3=5,a1a3=4, 又?jǐn)?shù)列{an}為遞增數(shù)列, 解得a1=1,a3=4, ∴q2=a3a1=4,q=2, ∴S6=a1(1-q6)1-q=1-261-2=63. 答案:63 9.(20xx高考安徽卷)數(shù)列{an}是等差數(shù)列,若a1+1,a3+3,a5+5構(gòu)成公比為q的等比數(shù)列,則q=    .  解析:設(shè)等差數(shù)列{an}的公差為d, 由題意,(a3+

7、3)2=(a1+1)(a5+5), 即(a1+2d+3)2=(a1+1)(a1+4d+5), 化簡可解得,d=-1, 所以公比q=a3+3a1+1=a1+2d+3a1+1=1. 答案:1 10.等比數(shù)列{an}的首項a1=-1,前n項和為Sn,若S10S5=3132,則{an}的通項公式an=    .  解析:∵S10S5=3132, ∴S10-S5S5=-132, ∵S5,S10-S5,S15-S10成等比數(shù)列,且公比為q5, ∴q5=-132,q=-12, 則an=-1×(-12)n-1=-(-12)n-1. 答案:-(-12)n-1 三、解答

8、題 11.(20xx高考四川卷)在等比數(shù)列{an}中,a2-a1=2,且2a2為3a1和a3的等差中項,求數(shù)列{an}的首項、公比及前n項和. 解:設(shè)該數(shù)列的公比為q. 由已知,可得 a1q-a1=2,4a1q=3a1+a1q2, 所以a1(q-1)=2,q2-4q+3=0, 解得q=3或q=1. 由于a1(q-1)=2, 因此q=1不合題意,應(yīng)舍去. 故公比q=3,首項a1=1. 所以數(shù)列{an}的前n項和Sn=3n-12. 12.已知等比數(shù)列{an}的前n項和為Sn,若S1,2S2,3S3成等差數(shù)列,且S4=4027. (1)求數(shù)列{an}的通項公式; (2)求證

9、Sn<32. (1)解:設(shè)等比數(shù)列{an}的公比為q. ∵S1,2S2,3S3成等差數(shù)列 ∴4S2=S1+3S3, 即4(a1+a2)=a1+3(a1+a2+a3), ∴a2=3a3, ∴q=a3a2=13. 又S4=4027, 即a1(1-q4)1-q=4027, 解得a1=1, ∴an=(13)n-1. (2)證明:由(1)得Sn=a1(1-qn)1-q =1-(13) n1-13 =32[1-(13)n]<32. 能力提升 13.已知定義在R上的函數(shù)f(x)=ax(0<a<1),且f(1)+f(-1)=52,若數(shù)列{f(n)

10、}(n∈N*)的前n項和等于3132,則n等于( B ) (A)4 (B)5 (C)6 (D)7 解析:由f(1)+f(-1)=52,得a+a-1=52,即a+1a=52,解得a=2(舍去)或a=12,f(n)=(12)n,則數(shù)列{f(n)}是首項為f(1)=12,公比q=12的等比數(shù)列,所以Sn=f(1)(1-qn)1-q=12×1-(12) n1-12=1-(12)n,由1-(12)n=3132得(12)n=132,解得n=5,故選B. 14.(20xx山東棗莊一模)已知等比數(shù)列{an}中,a2=1,則其前3項的和S3的取值范圍是( D ) (A)(-∞,-1]

11、 (B)(-∞,0)∪(1,+∞) (C)[3,+∞) (D)(-∞,-1]∪[3,+∞) 解析:設(shè)等比數(shù)列{an}的公比為q, 則S3=a1+a2+a3=a2(1+q+1q)=1+q+1q, 當(dāng)q>0時,S3=1+q+1q≥1+2q·1q=3, 當(dāng)q<0時,S3=1-(-q-1q) ≤1-2(-q)·(-1q)=-1. ∴S3∈(-∞,-1]∪[3,+∞).故選D. 15.(20xx高考陜西卷)設(shè)Sn表示數(shù)列{an}的前n項和. (1)若{an}是等差數(shù)列,推導(dǎo)Sn的計算公式; (2)若a1=1,q≠0,且對所有正整數(shù)n,有Sn=1-qn1

12、-q.判斷{an}是否為等比數(shù)列,并證明你的結(jié)論. 解:(1)設(shè){an}的公差為d, 則Sn=a1+a2+…+an =a1+(a1+d)+…+[a1+(n-1)d], 又Sn=an+(an-d)+…+[an-(n-1)d], ∴2Sn=n(a1+an), ∴Sn=n(a1+an)2. (2)當(dāng)n=1時,S1=1. 當(dāng)n=2時,S2=1-q21-q=1+q,a1+a2=1+q,a2=q. 當(dāng)n=3時,S3=1-q31-q=1+q+q2,a1+a2+a3=1+q+q2,a3=q2; 初步斷定數(shù)列{an}為等比數(shù)列. 證明如下: ∵Sn=1-qn1-q, ∴an+1=Sn+

13、1-Sn=1-qn+11-q-1-qn1-q =qn(1-q)1-q=qn. ∵a1=1,q≠0, ∴當(dāng)n≥1時,有an+1an=qnqn-1=q, 因此,{an}是首項為1且公比為q的等比數(shù)列. 探究創(chuàng)新 16.(20xx廣東十校聯(lián)考)如圖給出一個“三角形數(shù)陣”.已知每一列數(shù)成等差數(shù)列,從第三行起,每一行數(shù)成等比數(shù)列,而且每一行的公比都相等,記第i行第j列的數(shù)為aij(i≥j,i,j∈N*),則a53=    ,amn=    (m≥3).          14         12,14         34,38,316         … 解析:由題意可知第一列首項為14,公差d=12-14=14,從第三行起每一行的公比q=12, 所以a51=14+4×14=54, a53=a51q2=54×(12)2=516. m≥3時,am1=14+(m-1)×14=m4, amn=m4×(12)n-1=m2n+1. 答案:516 m2n+1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!