高考數(shù)學(xué) 考點(diǎn)分類自測 平面向量的數(shù)量積及平面向量的應(yīng)用 理

上傳人:仙*** 文檔編號:42807030 上傳時(shí)間:2021-11-28 格式:DOC 頁數(shù):5 大小:63.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué) 考點(diǎn)分類自測 平面向量的數(shù)量積及平面向量的應(yīng)用 理_第1頁
第1頁 / 共5頁
高考數(shù)學(xué) 考點(diǎn)分類自測 平面向量的數(shù)量積及平面向量的應(yīng)用 理_第2頁
第2頁 / 共5頁
高考數(shù)學(xué) 考點(diǎn)分類自測 平面向量的數(shù)量積及平面向量的應(yīng)用 理_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué) 考點(diǎn)分類自測 平面向量的數(shù)量積及平面向量的應(yīng)用 理》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 考點(diǎn)分類自測 平面向量的數(shù)量積及平面向量的應(yīng)用 理(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 高考理科數(shù)學(xué)考點(diǎn)分類自測:平面向量的數(shù)量積及平面向量的應(yīng)用 一、選擇題 1.若向量a,b,c滿足a∥b且a⊥c, 則c(a+2b)=(  ) A.4 B.3 C.2 D.0 2.若向量a=(1,2),b=(1,-1),則2a+b與a-b的夾角等于(  ) A.- B. C. D. 3.已知a=(1,2),b=(x,4)且ab=10,則|a-b|=(  ) A.-10 B.10 C.- D. 4.若a,b,c均為單位向量,且ab=0,(a-c)(b-c)≤0,則|a+b-c|的最大值為(  

2、) A.-1 B.1 C. D.2 5.已知a與b均為單位向量,其夾角為θ,有下列四個(gè)命題 p1:|a+b|>1?θ∈[0,)  p2:|a+b|>1?θ∈(,π] p3:|a-b|>1?θ∈[0,)  p4:|a-b|>1?θ∈(,π] 其中的真命題是(  ) A.p1,p4 B.p1,p3 C.p2,p3 D.p2,p4 6.已知|a|=2|b|≠0,且關(guān)于x的函數(shù)f(x)=x3+|a|x2+abx在R上有極值,則a與b的夾角范圍為(  ) A.(0,) B.(,π] C.(,π] D.(,]

3、二、填空題 7.已知兩個(gè)單位向量e1,e2的夾角為,若向量b1=e1-2e2,b2=3e1+4e2,則b1b2=________. 8.已知a與b為兩個(gè)不共線的單位向量,k為實(shí)數(shù),若向量a+b與向量ka-b垂直,則k=________. 9.已知|a|=|b|=2,(a+2b)(a-b)=-2,則a與b的夾角為____. 三、解答題 10.已知a、b、c是同一平面內(nèi)的三個(gè)向量,其中a=(1,2). (1)若|c|=2,且c∥a,求c的坐標(biāo); (2)若|b|=,且a+2b與2a-b垂直,求a與b的夾角θ. 11.設(shè)a=(1+cos x,1+sin x),b=(

4、1,0),c=(1,2). (1)求證:(a-b)⊥(a-c); (2)求|a|的最大值,并求此時(shí)x的值. 12.在△ABC中,角A、B、C的對邊分別為a,b,c.若==k(k∈R). (1)判斷△ABC的形狀; (2)若k=2,求b的值. 詳解答案 一、選擇題 1.解析:由a∥b及a⊥c,得b⊥c, 則c(a+2b)=ca+2cb=0.答案:D 2.解析:2a+b=(3,3),a-b=(0,3),則cos〈2a+b,a-b〉===,故夾角為.答案:C 3.解析:因?yàn)閍b=10,所以x+8=10,x=2,所以a-b=(-1

5、,-2),故|a-b|=. 答案:D 4.解析:由已知條件,向量a,b,c都是單位向量可以求出,a2=1,b2=1,c2=1,由ab=0,及 (a-c)(b-c)≤0,可以知道,(a+b)c≥c2=1,因?yàn)閨a+b-c|2=a2+b2+c2+2ab-2ac-2bc, 所以有|a+b-c|2=3-2(ac+bc)≤1, 故|a+b-c|≤1. 答案:B 5.解析:由|a+b|>1可得:a2+2ab+b2>1,∵|a|=1, |b|=1,∴ab>-.故θ∈[0,).當(dāng)θ∈[0,)時(shí),ab>-,|a+b|2=a2+2ab+b2>1,即|a+b|>1;由|a-b|>1可得:a2-2ab+

6、b2>1,∵|a|=1,|b|=1, ∴ab<.故θ∈(,π],反之也成立. 答案:A 6.解析:f(x)=x3+|a|x2+abx在R上有極值,即f′(x)=x2+|a|x+ab=0有兩個(gè)不同的實(shí)數(shù)解, 故Δ=|a|2-4ab>0?cos〈a,b〉<,又〈a,b〉∈[0,π], 所以〈a,b〉∈(,π]. 答案:C 二、填空題 7.解析:由題設(shè)知|e1|=|e2|=1,且e1e2=,所以b1b2=(e1-2e2)(3e1+4e2)=3e-2e1e2-8e=3-2-8=-6 答案:-6 8.解析:∵a+b與ka-b垂直, ∴(a+b)(ka-b)=0, 化簡得(k-1)

7、(ab+1)=0,根據(jù)a、b向量不共線,且均為單位向量得ab+1≠0,得k-1=0,即k=1. 答案:1 9.解析:由|a|=|b|=2,(a+2b)(a-b)=-2,得ab=2,cos〈a,b〉===,所以〈a,b〉=60. 答案: 三、解答題 10.解:(1)設(shè)c=(x,y),由c∥a和|c|=2可得 ,∴或, ∴c= (2,4)或c=(-2,-4). (2)∵(a+2b)⊥(2a-b),∴(a+2b)(2a-b)=0, 即2a2+3ab-2b2=0. ∴2|a|2+3ab-2|b|2=0. ∴25+3ab-2=0,∴ab=-. ∴cos θ===-1. ∵θ∈[

8、0,π],∴θ=π. 11.解:(1)證明:a-b=(cos x,1+sin x), a-c=(cos x,sin x-1), (a-b)(a-c)=(cos x,1+sin x)(cos x,sin x-1)=cos2x+sin2x-1=0. ∴(a-b)⊥(a-c). (2)|a|= = = ≤ =+1. 當(dāng)sin(x+)=1,即x=+2kπ(k∈Z)時(shí),|a|有最大值+1. 12.解:(1)∵=cbcos A,=bacos C, ∴bccos A=abcos C, 根據(jù)正弦定理,得sin Ccos A=sin Acos C, 即sin Acos C-cos Asin C=0,sin(A-C)=0, ∴∠A=∠C,即a=c. 則△ABC為等腰三角形. (2)由(1)知a=c,由余弦定理,得 =bccos A=bc=. =k=2,即=2,解得b=2.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!