《2015屆高考數(shù)學(xué)總復(fù)習(xí) 基礎(chǔ)知識名師講義 第二章 第一節(jié)函數(shù)及其表示 文》由會員分享,可在線閱讀,更多相關(guān)《2015屆高考數(shù)學(xué)總復(fù)習(xí) 基礎(chǔ)知識名師講義 第二章 第一節(jié)函數(shù)及其表示 文(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
【金版學(xué)案】2015屆高考數(shù)學(xué)總復(fù)習(xí) 基礎(chǔ)知識名師講義 第二章 第一節(jié)函數(shù)及其表示 文
近三年廣東高考中對本章考點考查的情況
年份
題號
賦分
所考查的知識點
2011
4
5
函數(shù)的定義域
10
5
函數(shù)的新定義問題
19
14
利用導(dǎo)數(shù)討論含參數(shù)的函數(shù)的單調(diào)性
2012
4
5
函數(shù)的奇偶性
11
5
函數(shù)的定義域
21
14
三次函數(shù)的極值、分類討論
2013
2
5
對數(shù)函數(shù)的定義域
12
5
導(dǎo)數(shù)的幾何意義
21
14
三次函數(shù)的單調(diào)性、最值
1 / 8
本章內(nèi)容主要包括:函
2、數(shù)的概念與表示,函數(shù)的基本性質(zhì),基本初等函數(shù),函數(shù)的應(yīng)用,導(dǎo)數(shù)的概念、運算及應(yīng)用.
1.函數(shù)的概念、表示和函數(shù)的基本性質(zhì)(單調(diào)性與最值、奇偶性、周期性):
(1)判斷兩函數(shù)是否為同一函數(shù),確定定義域與對應(yīng)關(guān)系即可.
(2)用換元法求函數(shù)的解析式時,注意換元前后的等價性.
(3)單調(diào)性與最值是函數(shù)的局部性質(zhì),凸顯用導(dǎo)數(shù)研究單調(diào)性及利用單調(diào)性求最值或求參數(shù)的取值范圍.
(4)奇偶性是函數(shù)的整體性質(zhì),奇偶性、周期性的綜合運用靈活多變.
2.基本初等函數(shù):以具體的二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)等函數(shù)的概念、性質(zhì)和圖象為主要考查對象,適當(dāng)考查分段函數(shù)、抽象函數(shù).
3.函數(shù)的應(yīng)用主要包
3、含:函數(shù)與方程、函數(shù)模型及應(yīng)用兩部分內(nèi)容.
(1)對函數(shù)是否存在零點(方程是否存在實根)進(jìn)行判斷或利用零點(方程實根)的存在情況求相關(guān)參數(shù)的取值范圍,是高考中常見的題目類型.
(2)函數(shù)的實際應(yīng)用問題,多以社會實際生活為背景,設(shè)問新穎、靈活,綜合性較強.
4.導(dǎo)數(shù)的概念、運算及應(yīng)用.
高考總復(fù)習(xí)數(shù)學(xué)(文科)(1)導(dǎo)數(shù)的概念是推導(dǎo)基本初等函數(shù)導(dǎo)數(shù)公式和四則運算法則的基礎(chǔ).
(2)利用導(dǎo)數(shù)求曲線的切線方程時,一定要分清已知點是否在曲線上.另外,曲線的切線和平面幾何中圓的切線概念易混淆,曲線在點P(x0,f(x0))處的切線是曲線另一點Q無限接近點P時的極限位置,它與曲線可能還有其他公共點
4、.
(3)利用公式求導(dǎo)時,一定要注意公式的適用范圍及符號,還要注意公式不要用混.
(4)導(dǎo)數(shù)的應(yīng)用包括函數(shù)的單調(diào)性、極值、最值等方面,單調(diào)性是關(guān)鍵,一個函數(shù)的遞增區(qū)間或遞減區(qū)間有多個時,不能盲目地將它們?nèi)〔⒓?,特別是函數(shù)的定義域不能忽略.
在選擇題和填空題中出現(xiàn),主要以導(dǎo)數(shù)的運算、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的應(yīng)用為主(研究函數(shù)的單調(diào)性、極值和最值等);在解答題中,有時作為壓軸題,主要考查導(dǎo)數(shù)的綜合應(yīng)用,往往與函數(shù)、方程、不等式、數(shù)列、解析幾何等聯(lián)系在一起,考查學(xué)生的分類討論、轉(zhuǎn)化與化歸等思想.
預(yù)測高考對本部分內(nèi)容的考查,仍會以小題和大題的形式出現(xiàn),小題主要考查基本初等函數(shù)的圖象、性質(zhì),幾種
5、常見函數(shù)模型在實際問題中的應(yīng)用以及函數(shù)零點,函數(shù)與方程的關(guān)系等,大題主要以函數(shù)為背景,以導(dǎo)數(shù)為工具,考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值或最值問題,在函數(shù)、不等式、解析幾何等知識網(wǎng)絡(luò)交匯點命題.
復(fù)習(xí)本章要重點解決好五個問題:
1.準(zhǔn)確、深刻地理解函數(shù)的有關(guān)概念.
概念是數(shù)學(xué)的基礎(chǔ),而函數(shù)是數(shù)學(xué)中最主要的概念之一,函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終.?dāng)?shù)、式、方程、不等式、導(dǎo)數(shù)、數(shù)列等都是以函數(shù)為中心的代數(shù)知識.近十年來,高考試題中始終貫穿著函數(shù)及其性質(zhì)這條主線.
2.揭示并認(rèn)識函數(shù)與其他數(shù)學(xué)知識的內(nèi)在聯(lián)系.
函數(shù)是研究變量及相互聯(lián)系的數(shù)學(xué)概念,是變量數(shù)學(xué)的基礎(chǔ),利用函數(shù)觀點可以從
6、較高的角度處理式、方程、不等式、數(shù)列、曲線與方程等內(nèi)容.
3.把握數(shù)形結(jié)合的特征和方法.
函數(shù)圖象的幾何特征與函數(shù)性質(zhì)的數(shù)量特征緊密結(jié)合,圖象有效地揭示了各類函數(shù)的定義域、值域、單調(diào)性、奇偶性、周期性等基本屬性.因此,既要從定形、定性、定理、定位各方面精確地觀察圖形、繪制圖形,又要熟練地掌握函數(shù)圖象的平移變換、對稱變換、伸縮變換.
4.認(rèn)識函數(shù)思想的實質(zhì),強化應(yīng)用意識.
函數(shù)思想的實質(zhì)就是用聯(lián)系與變化的觀點提出數(shù)學(xué)對象,抽象數(shù)量特征,建立函數(shù)關(guān)系,使問題得以解決.縱觀近幾年高考題,考查函數(shù)思想方法,尤其是應(yīng)用題力度加大,因此一定要認(rèn)識函數(shù)思想的實質(zhì),強化應(yīng)用意識.
5.運用好導(dǎo)數(shù)
7、這一銳利武器.
應(yīng)始終把握對導(dǎo)數(shù)概念的認(rèn)識、計算及應(yīng)用這條主線.復(fù)習(xí)應(yīng)側(cè)重概念、公式、法則在各方面的應(yīng)用,應(yīng)淡化某些公式、法則的理論推導(dǎo),應(yīng)立足基礎(chǔ)知識和基本方法的復(fù)習(xí),以熟練技能、強化應(yīng)用為目標(biāo).學(xué)會優(yōu)先考慮利用導(dǎo)數(shù)求函數(shù)的極大(小)值、最大(小)值或解決應(yīng)用問題,這些問題是函數(shù)內(nèi)容的繼續(xù)與延伸,這種方法使復(fù)雜問題簡單化.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的綜合問題,尤其是拋物線與三次函數(shù)的切線問題,是高考中考查綜合能力的一個方向,應(yīng)引起注意.
第一節(jié) 函數(shù)及其表示
1.了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念.
2.在實際情境中,會根據(jù)不同的需要
8、選擇恰當(dāng)?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù).
3.了解簡單的分段函數(shù),并能簡單應(yīng)用.
知識梳理
一、函數(shù)與映射的概念
函數(shù)
映射
兩集合
A、B
設(shè)A、B是兩個________
設(shè)A、B是兩個________
對應(yīng)關(guān)系
f:A→B
如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的______一個數(shù)x,在集合B中有______確定的數(shù)f(x)和它對應(yīng)
如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的______一個元素x,在集合B中有________的元素y與之對應(yīng)
名稱
稱________為從集合A到集合B的一個函數(shù)
9、
稱對應(yīng)________為從集合A到集合B的一個映射
記法
y=f(x),x∈A,x∈B
對應(yīng)f:A→B是一個映射
二、函數(shù)的表示
1.函數(shù)的表示方法.
表示函數(shù)的方法,常用的有解析法、列表法和圖象法三種.
(1)解析法:就是把兩個變量的函數(shù)關(guān)系,用一個等式表示,這個等式叫做函數(shù)的解析表達(dá)式,簡稱解析式.
(2)列表法:就是列出表格來表示兩個變量的函數(shù)關(guān)系.
(3)圖象法:就是用函數(shù)圖象表示兩個變量之間的關(guān)系.
2.函數(shù)解析式的常用求法.
(1)配湊法;(2)換元法;(3)待定系數(shù)法;(4)賦值法.
三、函數(shù)定義域的確定
1.定義域是函數(shù)的靈魂,因此在研究函
10、數(shù)時一定要遵循“定義域優(yōu)先”的原則.
確定函數(shù)的定義域的原則是:
(1)當(dāng)函數(shù)y=f(x)是用表格給出時,函數(shù)的定義域是指表格中實數(shù)x的集合;
(2)當(dāng)函數(shù)y=f(x)是用圖象給出時,函數(shù)的定義域是指圖象在x軸上投影所覆蓋的實數(shù)x的集合;
(3)當(dāng)函數(shù)y=f(x)是用解析式給出時,函數(shù)的定義域就是指使這個式子有意義的所有實數(shù)x的集合;
(4)當(dāng)y=f(x)是由實際問題給出時,函數(shù)的定義域由實際問題的意義確定.
基礎(chǔ)自測
1.下列圖形中不能作為函數(shù)圖象的是( )
解析:根據(jù)函數(shù)定義,定義域內(nèi)任何一個x取值,都有且只有唯一的y=f(x)與之對應(yīng),故選D.
答案:D
11、
2.設(shè)A={x|0≤x≤6},B={y|0≤y≤2},則f:A→B不是函數(shù)的是( )
A.f:x→y=x B.f:x→y=x
C.f:x→y=x D.f:x→y=x
解析:因為x∈A,y=x∈[0,3],而B={y|y∈[0,2]}.由函數(shù)定義可知,對于6∈A,在集合B中找不到其對應(yīng)元素3,故f:x→y=x不是函數(shù).故選A.
答案:A
3.(2013浙江卷文11改編)已知函數(shù)f(x)=.若f(a)=2,則實數(shù)a=( )
A. B.-3
C. 3或-3 D.或-
解析:因為f(x)=,且f(a)=2,所以=2,即a2=9,
12、所以a=3或-3.故選C.
答案:C
4. (2013東莞城南中學(xué)月考)若函數(shù)f(x)=,則f(x)的定義域是__________.
解析:1-log2x≥0,所以log2x≤1,得0<x≤2,即定義域為(0,2].
答案:(0,2]
2.由解析式表示的函數(shù)的定義域的求法.
(1)若f(x)是整式,則函數(shù)的定義域是實數(shù)集R;
(2)若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;
(3)若f(x)是二次(偶次)根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;
(4)若f(x)是對數(shù)式,則函數(shù)的定義域是使真數(shù)的式子大于0且底數(shù)大于0并不等于1的
13、實數(shù)集合;
(5)若f(x)是指數(shù)式,則零指數(shù)冪的底數(shù)不等于零;
(6)若f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;
(7)含參問題的定義域要分類討論.
四、分段函數(shù)
1.分段函數(shù)的定義:在其定義域的不同子集上,分別用幾個不同的式子來表示對應(yīng)關(guān)系的函數(shù),叫做分段函數(shù).它是一類較特殊的函數(shù).
2.分段函數(shù)是一個函數(shù),而不是幾個函數(shù).若函數(shù)為分段函數(shù),則分別求出每一段上的解析式,再合在一起.
3.因分段函數(shù)在其定義域內(nèi)的不同子集上,其對應(yīng)法則不同而分別用不同的式子來表示,因此在求函數(shù)值時,一定要注意自變量的值所在的子集,而代入相應(yīng)的
14、解析式去求函數(shù)值,不要代錯解析式.
4.分段函數(shù)的定義域等于各段函數(shù)的定義域的并集,其值域等于各段函數(shù)的值域的并集.
一、非空數(shù)集 非空集合 任意 唯一 任意 唯一確定 f:A→B f:A→B
,
1.(2013山東卷)函數(shù)f(x)=+的定義域為( )
A.(-3,0] B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
解析:由題意解得-3<x≤0,故選A.
答案:A
2.(2013新課標(biāo)全國I卷)已知函數(shù)f(x)=若|f(x)
15、|≥ax,則a的取值范圍是( )
A.(-∞,0] B.(-∞,1]
C.[-2,1] D.[-2,0]
解析:∵|f(x)|=
∴由|f(x)|≥ax得,且由可得a≥x-2,則a≥-2,排除A、B,
當(dāng)a=1時,易證ln(x+1)