《經(jīng)濟數(shù)學(xué)》教學(xué)大綱
《《經(jīng)濟數(shù)學(xué)》教學(xué)大綱》由會員分享,可在線閱讀,更多相關(guān)《《經(jīng)濟數(shù)學(xué)》教學(xué)大綱(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、B 》課程教學(xué)大綱 AdvancedMathematicsB 課程代碼: 03100B01 , 03100B02 課程性質(zhì):公共基礎(chǔ)理論課(必修) 適用專業(yè):工商、會計等經(jīng)管類各專業(yè)開課學(xué)期: 1 、 2 總學(xué)時數(shù): 144 總學(xué)分數(shù): 9 修訂年月: 2006 年 6 月執(zhí)筆:古偉清、余揚 一、課程的性質(zhì)與目的 《高等數(shù)學(xué) B是經(jīng)濟與管理等學(xué)科各專業(yè)的一門必修的重要基礎(chǔ)課。本課程對幫助學(xué)生了解 經(jīng)濟領(lǐng)域中的數(shù)量關(guān)系與優(yōu)化規(guī)律的科學(xué)有著重要的意義。 通過本課程的學(xué)習(xí),使學(xué)生對極限的思想和方法有進一步的認識,對具體與抽象、特殊與一般、 有限與無限等辯證關(guān)系有初步的了解,要使學(xué)
2、生獲得:一元函數(shù)微積分學(xué);向量代數(shù)和空間解析幾 何;多元函數(shù)微積分學(xué);無窮級數(shù)(包括傅里葉級數(shù)) ;常微分方程等方面的基本概念、基本理論和 基本運算技能,建立變量的思想,培養(yǎng)辯證唯物主義觀點,并接受運用變量數(shù)學(xué)方法解決簡單實際 問題的初步訓(xùn)練,同時要通過各個教學(xué)環(huán)節(jié)傳授數(shù)學(xué)的思想方法,逐步培訓(xùn)學(xué)生的抽象概括能力、 邏輯推理能力、空間想象能力和自學(xué)能力;在傳授知識的同時,要著眼于提高學(xué)生的數(shù)學(xué)修養(yǎng)和素 質(zhì),培養(yǎng)學(xué)生用數(shù)學(xué)的方法去解決實際問題的意識、興趣,用定性與定量相結(jié)合的方法處理經(jīng)濟問 題的能力,為學(xué)生今后在其各個專業(yè)方向的深入發(fā)展打下牢固的數(shù)學(xué)基礎(chǔ)。 二、課程教學(xué)內(nèi)容及學(xué)時分配
3、 (一)教學(xué)內(nèi)容 1 .函數(shù)、極限與連續(xù) 函數(shù):函數(shù)的概念及表示法,函數(shù)的特性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)、初等函數(shù) 的概念,基本初等函數(shù)的性質(zhì)及圖形。簡單應(yīng)用問題函數(shù)關(guān)系的建立;經(jīng)濟變量間的數(shù)量關(guān)系:總 成本函數(shù)、總收入函數(shù)、總利潤函數(shù)、需求函數(shù)、供給函數(shù)等。 極限:數(shù)列極限的定義,收斂數(shù)列的性質(zhì)(唯一性,有界性) ;函數(shù)極限的定義,函數(shù)的左右極 限,函數(shù)極限的性質(zhì)(局部保號性、局部有界性) ,無窮小與無窮大的概念及其關(guān)系;極限的四則運 算法則,兩個極限存在準則(夾逼準則和單調(diào)有界準則) ,兩個重要極限,無窮小的比較。 函數(shù)的連續(xù)性:函數(shù)連續(xù)的定義,間斷點及其分類
4、,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的 性質(zhì)(最大最小值定理,零點定理和介值定理) 。 2 .導(dǎo)數(shù)與微分 導(dǎo)數(shù)與微分:導(dǎo)數(shù)的定義,導(dǎo)數(shù)的幾何意義,函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系;平面曲線的切線 和法線,導(dǎo)數(shù)的四則運算法則,復(fù)合函數(shù)求導(dǎo)法則,基本初等函數(shù)的導(dǎo)數(shù)公式;高階導(dǎo)數(shù)的概念, 初等函數(shù)的一、二階導(dǎo)數(shù)的求法,隱函數(shù)和參數(shù)式所確定的函數(shù)的一、二階導(dǎo)數(shù)的求法;微分的定 義,微分的運算法則(含微分形式的不變性) 。 3 .中值定理與導(dǎo)數(shù)應(yīng)用 羅爾定理和拉格朗日中值定理、柯西( Cauchy) 中值定理,洛必達法則,泰勒公式,函數(shù)的單 調(diào)性與曲線的凹凸性,函數(shù)的極值與最大最小值,求函數(shù)
5、曲線的漸近線,函數(shù)圖形的描繪,導(dǎo)數(shù)在 經(jīng)濟方面的應(yīng)用(邊際分析、彈性分析) 。 4 .不定積分 原函數(shù)與不定積分的定義,不定積分的性質(zhì),基本積分公式,換元積分法,分部積分法,有理 函數(shù)的積分。 5 .定積分及其應(yīng)用 定積分及其應(yīng)用:定積分的定義及其性質(zhì),積分上限的函數(shù)及其導(dǎo)數(shù),牛頓—萊布尼茨公式, 定積分的換元法和分部積分法;廣義積分的概念;定積分在幾何學(xué)中的應(yīng)用(面積、旋轉(zhuǎn)體體積、 平行截面面積為已知的立體的體積) ;積分在經(jīng)濟分析中的應(yīng)用。 6 .多元函數(shù)微積分 多元函數(shù)偏導(dǎo)數(shù):空間解析幾何簡介,多元函數(shù)的基本概念,二元函數(shù)的幾何表示,二元函數(shù) 的極限與連續(xù)性,有界閉
6、區(qū)域上連續(xù)函數(shù)的性質(zhì)。多元函數(shù)的偏導(dǎo)數(shù)的定義及其求法,高階偏導(dǎo)數(shù) 的概念及復(fù)合函數(shù)二階偏導(dǎo)數(shù)的求法;全微分的定義,全微分存在的必要條件和充分條件,多元復(fù) 合函數(shù)的求偏導(dǎo)法則,隱函數(shù)的求偏導(dǎo)公式(一個方程的情形) 。 偏導(dǎo)數(shù)的應(yīng)用:多元函數(shù)的極值及其求法,最大值、最小值問題及其簡單應(yīng)用,條件極值,拉 格朗日乘數(shù)法。 二重積分: 二重積分的概念、 性質(zhì)及計算 (直角坐標、 極坐標) ; 二重積分在幾何學(xué)中的應(yīng)用 (曲 面面積、立體體積) 7 .無窮級數(shù) 常數(shù)項級數(shù):無窮級數(shù)及其收斂與發(fā)散的定義,收斂級數(shù)的和的概念、無窮級數(shù)的基本性質(zhì), 級數(shù)收斂的必要條件,幾何級數(shù)和 P—級數(shù)的斂散
7、性;正項級數(shù)的比較、比值及根值審斂法,交錯 級數(shù)的萊布尼茲定理,絕對收斂與條件收斂的概念及其關(guān)系。 哥級數(shù):函數(shù)項級數(shù)的收斂與和函數(shù)的概念,哥級數(shù)的概念,阿貝爾定理,較簡單的哥級數(shù)的 收斂域的求法,哥級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),哥級數(shù)求和函數(shù);泰勤級數(shù),麥克勞林級數(shù), 函數(shù)展開成哥級數(shù)。 8 .微分方程與差分方程 微分方程的基本概念,可分離變量的微分方程,齊次方程;一階線性微分方程;線性微分方程 解的性質(zhì)及解的結(jié)構(gòu)定理;二階常系數(shù)齊次線性微分方程,常系數(shù)非齊次線性微分方程;差分方程 簡介。 (二)學(xué)時分配 本課程的教學(xué)時數(shù)為 144學(xué)時,分上、下兩學(xué)期,各學(xué)期的教學(xué)內(nèi)容及課時分
8、配如下表: (課 內(nèi)外學(xué)時比例均為1:2) , 教學(xué)環(huán)節(jié) 課程內(nèi)容 J、 講課 習(xí)題課 小計 函數(shù)、極限、連續(xù) 16 2 18 導(dǎo)數(shù)與微分 10 2 12 高等 中值定理與導(dǎo)數(shù)應(yīng)用 14 2 16 數(shù)學(xué) 中段檢測 2 B (1) 不定積分 8 2 10 定積分及其應(yīng)用 10 2 12 總復(fù)習(xí) 2 2 合計 58 12 72 高等 多元函數(shù)微積分 28 4 32 數(shù)學(xué) B (2) 中段檢測 2 無窮級數(shù) 16 2 18 微分方程與差分方程 16
9、 2 18 總復(fù)習(xí) 2 2 合計 62 10 72 總計 122 22 144 三、課程教學(xué)基本要求及重點難點 (一)函數(shù)、極限與連續(xù) 1 .基本要求 1) .深入理解函數(shù)的概念,掌握函數(shù)的表示方法,了解常用經(jīng)濟變量間的數(shù)量關(guān)系:總成本函 數(shù)、總收入函數(shù)、總利潤函數(shù)、需求函數(shù)、供給函數(shù)等,并會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。 2) .熟練掌握函數(shù)的奇偶性、單調(diào)性、周期性和有界性。 3) .理解復(fù)合函數(shù)、分段函數(shù)、反函數(shù)及隱函數(shù)的概念。 4) .掌握基本初等函數(shù)的性質(zhì)及其圖形,理解初等函數(shù)的概念。 5) .理解數(shù)列極限和函數(shù)極限的概念,理解函數(shù)左極限
10、與右極限的概念,以及極限存在與左、 右極限之間的關(guān)系,了解數(shù)列極限和函數(shù)極限的區(qū)別和聯(lián)系。 6) .掌握極限的性質(zhì)及四則運算法則。 7) .了解極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法。 8) .理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限。 9) .理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)) ,會判別函數(shù)間斷點的類型。 10) .了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,了解閉區(qū)間上連續(xù)函數(shù)的性質(zhì) (有界性、最大值和最小值定理、介值定理) ,并會應(yīng)用這些性質(zhì)。 2 .重點:函數(shù)概念,復(fù)合函數(shù)概念,基本初等函數(shù)的性質(zhì)及其圖形,極限
11、概念,極限四則運算 法則,連續(xù)概念。 3 .難點:極限的e —N、e — 6定義,求極限。 (二)、導(dǎo)數(shù)與微分 1 .基本要求: 2 )理解導(dǎo)數(shù)和微分的概念 ;了解導(dǎo)數(shù)、微分的幾何意義 ;了解函數(shù)可導(dǎo)、可微、連續(xù)之間的關(guān)系; 3 )熟練掌握導(dǎo)數(shù)和微分的運算法則(包括微分形式不變性)和導(dǎo)數(shù)的基本公式; 4 )熟練掌握復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法則,掌握用對數(shù)求導(dǎo)的方法; 5 )掌握求參數(shù)方程所表示的函數(shù)的導(dǎo)數(shù)方法; 6 )了解高階導(dǎo)數(shù)的概念;熟練掌握求初等函數(shù)一、二階導(dǎo)數(shù)的方法。 7 .重點:導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義及函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,導(dǎo)數(shù)的四 則運算法則和
12、復(fù)合函數(shù)的求導(dǎo)法,隱函數(shù)求導(dǎo)法;初等函數(shù)的一階、二階導(dǎo)數(shù)的求法。 8 .難點:復(fù)合函數(shù)的求導(dǎo)法,隱函數(shù)和參數(shù)式所確定的函數(shù)的高階導(dǎo)數(shù)。 (3) 、中值定理與導(dǎo)數(shù)應(yīng)用 1 .基本要求: 2 )理解羅爾定理和拉格朗日中值定理的條件和結(jié)論,了解柯西( Cauchy) 中值定理; 3 )熟練掌握洛必達法則和各種未定式極限的求法; 4 )熟練掌握函數(shù)單調(diào)性的判別方法極其應(yīng)用; 5 )熟練掌握求函數(shù)極值的方法,了解函數(shù)極值和最值的關(guān)系; 6 )熟練掌握函數(shù)曲線的凹凸性和拐點的判別方法及曲線漸近線的求法; 7 )掌握函數(shù)作圖的基本步驟和方法; 8 )掌握對常用經(jīng)濟函數(shù)進行邊際分析和彈性分
13、析的方法。 9 .重點:應(yīng)用導(dǎo)數(shù)工具分析函數(shù)性態(tài);對經(jīng)濟函數(shù)進行邊際分析和彈性分析。 10 .難點:函數(shù)性態(tài)分析。 (4) 、不定積分 1 .基本要求: 2 )理解原函數(shù)和不定積分的概念; 3 )熟練掌握不定積分的基本性質(zhì)和基本積分公式; 4 )熟練掌握換元積分法,分部積分法; 5 )會求有理函數(shù)的積分; 2 .重點:原函數(shù)與不定積分的定義,不定積分的性質(zhì),基本積分公式,換元積分法,分部積分 法。 6 .難點:換元積分法。 (5) 、定積分及其應(yīng)用 1 .基本要求: 2 )了解定積分的概念和性質(zhì); 3 )熟練掌握牛頓—萊布尼茨公式,會求變上限定積分函數(shù)的導(dǎo)數(shù); 4
14、 )熟練掌握求定積分的湊微分法和第二換元積分法,分部積分法; 5 )會利用定積分求平面圖形的面積和旋轉(zhuǎn)體的體積,會利用定積分求解簡單的經(jīng)濟應(yīng)用題; 6 )了解廣義積分收斂和發(fā)散的概念,掌握計算廣義積分的基本方法。 7 .重點:定積分的概念及性質(zhì),定積分的換元法與分部積分法,變上限的積分作為其上限的函 數(shù)及其求導(dǎo)定理,牛頓—萊布尼茲公式,定積分的幾何應(yīng)用和經(jīng)濟應(yīng)用。 8 .難點:變上限函數(shù)的求導(dǎo),換元積分法。 (6) 、多元函數(shù)微積分 1 .基本要求: 2 )理解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。 3 )了解多元函數(shù)的極限及連續(xù)的概念;理解多元函數(shù)的全微分和偏導(dǎo)數(shù)的概念。
15、 掌握偏導(dǎo)數(shù)和全微分的計算法。 4 )掌握復(fù)合函數(shù)求導(dǎo)法則。 5 )掌握偏導(dǎo)數(shù)的應(yīng)用。 6 )了解二重積分的概念與基本性質(zhì),了解二重積分在直角坐標系和極坐標系下的計算方法。 7 .重點:多元函數(shù)的概念,偏導(dǎo)數(shù)和全微分的概念,復(fù)合函數(shù)—階偏導(dǎo)數(shù)的求法,多元函數(shù)極 值和條件極值的概念。二重積分的概念,二重積分的計算方法(直角坐標、極坐標) 。 8 .難點:求抽象復(fù)合函數(shù)的二階偏導(dǎo)數(shù),求條件極值的拉格朗日乘數(shù)法。 (7) 、無窮級數(shù) 1 .基本要求: 1)常數(shù)項級數(shù)的收斂與發(fā)散的概念、 收斂級數(shù)的和的概念、 級數(shù)的基本性質(zhì)與收斂的必要條件; 2)幾何級數(shù)與p級數(shù)的收斂性、正項級
16、數(shù)審斂法(比較、比值、根值判別法) ; 3)任意項級數(shù)的絕對收斂與條件收斂 交錯級數(shù)與萊布尼茨定理; 4)哥級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域; 5)哥級數(shù)的和函數(shù) 哥級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì); 6)函數(shù)展開成哥級數(shù)(泰勒級數(shù)); 7)簡單哥級數(shù)的和函數(shù)的求法、初等函數(shù)的哥級數(shù)展開式。 2 .重點:無窮級數(shù)收斂、發(fā)散以及和的概念,幾何級數(shù)和 P—級數(shù)的收斂性,正項級數(shù)的比值 審斂法,萊布尼茲判別法,比較簡單的哥級數(shù)收斂區(qū)間的求法。用間接法展開函數(shù)為哥級數(shù)。 3 .難點:正項級數(shù)的比較審斂法,交錯級數(shù)的萊布尼茲定理,求哥級數(shù)的收斂域及和函數(shù),函 數(shù)展開為泰勒級數(shù)。
17、 (八)、微分方程與差分方程 1 .基本要求: 1 ) 了解微分方程及其階、解、通解、初始條件、特解的概念; 2)能識別下述一階微分方程、可分離變量的微分方程,齊次方程,一階線性方程 3)熟練掌握可分離變量的微分方程、齊次方程、及一階線性方程的解法,會求其通解、特解; 4) 了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理; 5)熟練掌握二階常系數(shù)齊次線性微分方程的解法; 6)掌握非齊次項為多項式,指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及以及它們的線性組合與乘積的 二階常系數(shù)非齊次線性微分方程的解法; 2.重點:變量可分離的方程及一階線性方程的解法,二階線性微分方程解的結(jié)構(gòu),二階常系數(shù) 齊次
18、(非齊次)線性微分方程的解法。 3 .難點:二階常系數(shù)非齊次線性微分方程的求解。 四、本課程與其它課程的聯(lián)系與分工 先修課程:無 后續(xù)課程:作為基礎(chǔ)課,它是許多后繼課,如統(tǒng)計學(xué)原理、工商企業(yè)經(jīng)營管理、市場營銷學(xué)、 應(yīng)用數(shù)理統(tǒng)計、西方經(jīng)濟學(xué)、市場調(diào)查與分析等專業(yè)基礎(chǔ)課和專業(yè)課的基礎(chǔ)。 五、建議教材及教學(xué)參考書 [ 1 吳贛昌主編, 《微積分 (經(jīng)管類 )》第二版 ,中國人民大學(xué)出版社 ,2007.7 出版 [2周誓達, 《微積分》 ,中國人民大學(xué)出版社 ,2004.11 出版 [ 3 同濟大學(xué)數(shù)學(xué)教研室主編, 《高等數(shù)學(xué)》 ,第五版,高等教育出版社, 2002.7 出版 [ 4周誓達編 ,《微積分學(xué)習(xí)指導(dǎo) (經(jīng)濟類與管理類 )》 ,中國人民大學(xué)出版社 ,2005.7 出版
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點)
- 某公司安全生產(chǎn)考核與獎懲辦法范文
- 安全作業(yè)活動安全排查表
- 某公司危險源安全辨識、分類和風險評價、分級辦法
- 某公司消防安全常識培訓(xùn)資料
- 安全培訓(xùn)資料:危險化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計劃快樂度寒假充實促成長
- 紅色插畫風輸血相關(guān)知識培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責任制