游泳鏡盒注塑模具設計-塑料注射模帶開題報告.zip,游泳,注塑,模具設計,塑料,注射,開題,報告
附錄1:外文翻譯
注塑模具單門優(yōu)化
李繼權,李德群,郭志英,左海元
(上海交通大學塑性科技學院,上海200030)
?電子郵件:hutli@163.com
2010年11月22日收到; 修訂于2007年3月19日
摘要:
本文介紹了注塑模具單門位置優(yōu)化方法。 的目標門優(yōu)化是最大限度地減少注塑件的翹曲,因為翹曲是大多數(shù)關鍵的質(zhì)量問題注塑部件受到門位置的影響很大。 特征翹曲定義為最大比在特征表面上移動到特征表面的突出長度以描述部分翹曲。 優(yōu)化是結合數(shù)值模擬技術找到最佳門位置,其中模擬退火算法用于搜索最佳值。 最后,文中討論了一個例子,可以得出結論,提出的方法是有效的。
關鍵詞:注塑模具,澆口位置,優(yōu)化,特征翹曲
doi:10.1631 / jzus.2007.A1077文件編號:A中文編號:TQ320.66
介紹
注塑成型是廣泛應用的plex但是高效的生產(chǎn)技術各種塑料制品,特別是那些具有生產(chǎn)要求高,耐受性好,復雜的形狀。 注塑件的質(zhì)量是塑料,零件幾何,模具的功能結構和工藝件。 最重要的注塑模具的一部分基本上如下三套組件:腔,門和跑步者,和冷卻系統(tǒng)。Lam和Seow(2000)和Jin和Lam(2002)
通過改變壁厚來實現(xiàn)空腔平衡,的部分。 平衡填充過程中空腔產(chǎn)生均勻分布的壓力和溫度,這可以大大減少翹曲那個部分。 但空腔平衡只是其中之一部分品質(zhì)的重要影響因素。埃斯佩其次,該部分具有其功能要求厚度不應通常變化。從注塑模具設計的觀點來看,門的特點是其大小和位置,以及跑步系統(tǒng)的大小和布局。門尺寸流道布局通常被確定為常數(shù)。相對來說,門的位置和跑步者的大小更多靈活,可以變化影響質(zhì)量的部分。因此,他們通常是設計pa-優(yōu)化參數(shù)。Lee和Kim(1996a)優(yōu)化了大小
賽跑者和大門平衡流氓系統(tǒng),注射腔。跑步平衡是描述為入口壓力的差異具有相同空腔的多腔模具,以及在熔體流動結束時的壓力差異每個腔中的路徑為不同的家庭模具腔體積和幾何形狀。方法論顯示出均勻的壓力分布在多個模具的整個成型周期內(nèi)的空腔空腔模具。Zhai等(2005a)提出了兩個門一個成型腔的優(yōu)化優(yōu)化,基于壓力梯度的cient搜索方法(PGSS),然后將焊接線定位到
通過改變流道尺寸形成多門零件所需的位置(Zhai等,2006)。如大批量需要多個門來縮短最大值,媽媽流路,相應減少注射壓力。該方法是有希望的,一個單腔的門和跑步者的標志多個門生產(chǎn)許多注塑件有一個門,無論是在單腔模具還是在多腔模具。因此,門的位置單門是最常見的設計參數(shù)優(yōu)化。形狀分析方法是由Courbebaisse和Garcia(2002)發(fā)表,其中注射成型的最佳澆口位置為est-
交配。隨后,他們開發(fā)了這種方法 - 進一步應用于單門位置op-L形例子的定時化(Courbebaisse,2005)。而且易于使用,并不耗時它僅僅用于簡單的平板零件的轉動均勻厚度。Pandelidis和Zou(1990)提出了opti-門的位置,間接的質(zhì)量措施與翹曲和物質(zhì)退化有關被表示為溫度dif-絕對的術語,超額的術語和摩擦過熱期翹曲受上述影響因素,但它們之間的關系并不明確。因此,優(yōu)化效果受到限制確定加權因子。Lee和Kim(1996b)開發(fā)了一種自動化選擇方法的門位置,其中一組初始門位置由設計者提出那么最佳門由相鄰節(jié)點定位評估方法。結論在很大程度上很大程度上取決于人類設計師的直覺,因為該方法的第一步是基于設計師的主張。所以結果是一個大的ex-帳篷限于設計師的經(jīng)驗。Lam和Jin(2001)開發(fā)了一個門口基于最小化的優(yōu)化方法流路長度標準偏差(SD [L])和填充時間的標準偏差(SD [T])注塑過程。隨后,Shen等2004a; 2004b)優(yōu)化了門的位置設計通過最小化填充壓力的加權和,不同流路之間的填充時間差,
溫度差異和過度包裝百分比。Zhai等(2005b)研究了最佳門位置具有注射壓力的評估標準填充結束。這些研究人員提出了對象 - 作為注塑成型的功能灌裝操作與產(chǎn)品相關素質(zhì)。但是,肛門和質(zhì)量非常復雜,不明確他們之間已經(jīng)觀察到關系。它是也難以選擇合適的加權因子為每個術語。這里給出了一個新的目標函數(shù)
評估注塑件的翹曲優(yōu)化門位置。為了測量零件質(zhì)量二直觀地,這個調(diào)查定義了特征翹曲評估零件翹曲,從而評估Moldflow的“flow plus翹曲”模擬輸出塑料洞察(MPI)軟件。目標func-最小化以實現(xiàn)最小變形門位優(yōu)化。模擬退火al-采用算法搜索最優(yōu)門位置。給出一個例子來說明效果,提出優(yōu)化程序的精度。
質(zhì)量指標:特點
特征經(jīng)紗的定義
為了將優(yōu)化理論應用于門設計,必須在該部分中規(guī)定該部件的質(zhì)量措施第一個例子。術語“質(zhì)量”可以參考許多產(chǎn)品性能,如機械,熱,電氣,光學,人體工學或幾何支撐,ERTIES。有兩種類型的零件質(zhì)量措施:直接和間接。一種模型,數(shù)值模擬結果的關系將是其特征在于直接質(zhì)量測量。相反,零件質(zhì)量的間接測量與之相關目標質(zhì)量,但不能提供直接估計的質(zhì)量。對于翹曲,間接質(zhì)量措施相關作品是注射性能之一成型流動行為或加權總和。表現(xiàn)為填充時間dif-沿著不同的流動路徑,溫度差 - 重要的,超額的百分比等等。它是ob-那么翹曲受到這些表現(xiàn)的影響,肛門,但翹曲與這些之間的關系表演不清楚和決心這些加權因素相當困難。因此,用上述目標函數(shù)的優(yōu)化可能不會使部件翹曲最小化完善的優(yōu)化技術。有時,不正當加權因素將導致絕對錯誤的重新sults。一些統(tǒng)計量從節(jié)點位移被表征為直接的質(zhì)量措施達到最小變形相關優(yōu)化研究。統(tǒng)計量通常是最大節(jié)點位移,av-十分之一百分位數(shù)節(jié)點位移的損失,以及整體平均節(jié)點位移(Lee和Kim,1995; 1996年b)。這些節(jié)點位移很容易從仿真結果中可以看出,在某種程度上代表變形。但統(tǒng)計流離失所不能有效描述注射成型的變形部分。在行業(yè),設計師和制造商通常更加注重零件翹曲程度一些具體特點比整體變形注塑件。在這項研究中,特征翹曲定義為描述變形注塑件。特征翹曲是該比例特征面的最大位移
特征面的投影長度(圖1):
其中γ是特征翹曲,h是最大值特征面上的位移偏離參考平臺,L是投影長度
參考方向上的特征曲面平行參考平臺。
對于復雜的功能(只有平面功能這里討論的特征翹曲通常是sepa-在參考平面上分為兩個成分,它們在2D坐標系上表示:
其中γx,γy是組分特征翹曲X,Y方向,L x,L y為投影長度X,Y分量上的特征曲面。
功能翹曲評估
確定目標特征后加上相應的參考平面方向,可計算L值立即從部分與計算分析幾何的方法(圖2)。 L是一個常數(shù)對于指定特征表面上的任何部分,被拒絕的方向。 但是h的評估更多比L更復雜
注塑成型工藝的模擬是一個常用技術來預測零件的質(zhì)量標志,模具設計和工藝設置。 的結果翹曲模擬表示為節(jié)點去除,對X,Y,Z分量(W x,W y,W z)的折射率,節(jié)點位移W.W是向量的向量長度W x·i,W y·j和W z·k的和,其中i,j,k是單位矢量X,Y,Z分量。 h是最大值特征面上的節(jié)點位移,這與正常方向相關參考平面,并可以從中得出結果翹曲模擬為了計算h,第i個節(jié)點的偏轉是
首先評估如下:
其中W i是正常方向的偏轉第i個節(jié)點的參考平面; W ix,W iy,W iz是
第i個節(jié)點X,Y,Z分量的偏差; α,β,γ
是參考的法向量的角度; A和B是要突出的功能的終端節(jié)點方向(圖2); W A和W B是偏差節(jié)點A和B:
其中W Ax,W Ay,W Az是X,Y,Z上的偏轉節(jié)點A的組件; W Bx,W By和W Bz是除節(jié)點B的X,Y,Z分量的反射; ωiA和ωiB是終端節(jié)點的加權因子,
計算公式如下:
其中L iA是第i個節(jié)點之間的投影機距離和節(jié)點A.最終,h是最大值絕對值W
在行業(yè)中,翹曲的檢查是在一個測量儀的幫助下進行測量部分應放置在參考平臺上,形成。 h的值是最大值讀取測量部分之間的空間面和參考平臺。
GATE位置優(yōu)化問題公式
質(zhì)量術語“翹曲”是指永久 - 零件變形,這不是造成的施加的載荷。它是由差異收縮引起的在整個部分,由于聚合物的不平衡流動,包裝,冷卻和結晶。門在注射模具中的放置是總模具中最重要的變量之一設計。模制件的質(zhì)量非常高,受到門的位置的影響,因為它影響了塑料流入模腔的方式。因此,不同的門位置引入inho-方向,密度,壓力的大氣溫度分布,相應地引入不同的翹曲值和分布。因此,門位置是一個有價值的設計變量,以最小化注塑件翹曲。因為cor-門位置與翹曲分布之間的關系在很大程度上獨立于熔體和模具溫度,假設在這個調(diào)查中模具條件保持不變。該注塑部件翹曲由量化特征翹曲在前面討論過部分。單門位置優(yōu)化因此可以制定如下
其中γ是特征翹曲; p是注射門口壓力; p 0是允許的,注塑機的密封壓力或設計師規(guī)定的允許注射壓力或制造商; X是坐標矢量候選門位置; X i是有限的節(jié)點元件網(wǎng)格模型的注塑成型零件過程模擬; N是節(jié)點的總數(shù)。在有限元網(wǎng)格模型中,每個節(jié)點是門的可能候選。 那里-前面,可能的門位置總數(shù)N p是N個節(jié)點的總數(shù)的函數(shù)要優(yōu)化的門位數(shù)總數(shù)n:
在這項研究中,只有單門位置
問題被調(diào)查。
模擬退火算法
模擬退火算法是其中之一最強大和最受歡迎的元啟發(fā)式解決由于提供優(yōu)化問對現(xiàn)實世界的問題的全球解決方案。該算法基于Metropolis等人的算法(1953年),這是最初提出的一種手段找到一個收集的均衡配置原子在給定的溫度。連接是 -
補充該算法和數(shù)學最小化首先被Pincus(1970)注意到,但它是Kirkpatrick等人(1983)提出它形成組合優(yōu)化技術的基礎,(和其他)問題。為了將模擬退火方法應用于優(yōu)化問題,使用目標函數(shù)f作為能量函數(shù)E.而不是找到低的能量配置,問題成為尋求近似全局最優(yōu)解。配置 - 替代設計變量的值為身體的能量配置,和該過程的控制參數(shù)代替溫度。隨機數(shù)發(fā)生器用作a為設計變量生成新值的方式。很明顯,這個算法只需要mini-考慮到這些問題。因此,形成最大化問題的目標函數(shù) - 乘以( - 1)以獲得能力的形式。模擬退火的主要優(yōu)點其他方法的算法是避免的能力被困在當?shù)氐淖畹忘c。該算法em-隨機搜索,不僅可以接受減少目標函數(shù)f的變化,也是接受一些增加它的改變。后者是以概率p接受
其中的Δf是?F的增加中,k是玻爾茲曼常數(shù),牛逼是與之類似的控制參數(shù)原始應用程序被稱為系統(tǒng)“溫度”與目標函數(shù)無關參與其中。在門位優(yōu)化的情況下,
該算法的實現(xiàn)如圖3所示,該算法詳細說明如下:(1)SA算法從初始門限位置開始,具有“溫和”的分配值T k的“噸“參數(shù)T(”溫度“計數(shù)器?是初始設置為零)正確的控制參數(shù)c(0
F1小于該機型的0.8倍鎖模力,故合格。
7.3對于模具厚度的校核
模具的寬度只要符合這個公式,該注射機就符合要求。本次設計的厚度,由表3-1可知道此次設計所用到的最大模具的厚度,而用到的最小模的模具的厚度為,合格。
7.4 開模行程的校核
開模距離:
其中,,,(這三個量是個個分型面移動的距離)
:
符合要求
結 論
在這段做畢業(yè)設計的時間里,我懂得了很多,從接到論文題目到確定設計方案,再到最終完成整個論文文章,都使我對模具方面有了全新的認識,并且在設計過程中我知道了自己的不足和補充了很多我之前不知道的知識,讓我知道還有很多地方是需要我去更深層次的去了解的。同時在本次設計過程中,讓我有充分的空間和時間去獨立思考和解決問題解,這大大的提升我今后在遇到困難時所及時作出正確反應的能力。在這次的設計之后,我認識到以前所學習到的知識都不難,而在設計中涉及到的許多正規(guī)方面的問題讓我無所適從很是棘手。
這段做設計的時間讓我認識到了我自身的不足,我需要改變我的不足之處,學習更多的知識,使自己的知識量得到擴充。另外,在這次畢業(yè)設計中,我的繪圖技能有了很大的提升,并且在模具設計方面,我能夠更多的去了解該模具的結構和模具加工工藝。在個人能力的提升方面,我知道了如何培養(yǎng)自己擁有堅強的意志力。通過這次自己做畢業(yè)設計,我知道了做設計不僅僅要有淵博的知識,更重要的是要用心,只有真正的用心了才能將設計做好,設計的過程是自己學習和研究的過程是自我能力提升的一個過程。作為這大學四年最后結束的設計,不僅能檢測我這四年所學,也是對于我自己能力的一種認可。
致 謝
在此要感謝我的論文導師對我耐心的指導,感謝老師在設計過程中對我的幫助。在這次畢業(yè)設計過程中,我閱讀了很多和注塑模相關的資料,并且和同學相互交流經(jīng)驗,通過這些途徑,我學到了很多東西,也吃了不少苦,但收獲很多。在整個設計過程中我學會了獨立工作,同時也大大提升了我的工作能力,這次做畢業(yè)設計的經(jīng)歷會對我今后的生活起到非常大的影響。這次設計還明顯提高了我的動手的能力,使我切身體會到了在創(chuàng)造過程中突破重重阻礙時喜悅。畢竟這是我第一次自主設計所以做的不是太好,但是在設計過程中我所得到的東西是我做設計這段時間以來最大的收獲和財富。
參考文獻
[1] 鄭生榮.嵌件注塑成型工藝的特點[J].模具工業(yè),2008(11):38-41.
[2] 艾方.精密注塑模具[J].模具技術,2010(5):67-71.
[3] 李建國.注射模成型零件工作尺寸計算方法分析[J].模業(yè),2011(11):38-41
[4] 駱志文.注射模冷卻時間計算分析[J].模具工業(yè),2012(3):29-34.
[5] 王建華,徐佩弦.注射模的熱流道技術[M].機械工業(yè),2011.38-41.
[6] 高茂濤.注塑模具發(fā)展綜述[J].輕工科技,2014,(2):40-50.
[7] 蘇日美.我國注塑模具的問題及發(fā)展方向[J].工程與材料科學,2013(11):61-84
[8] 葉久新,王群.塑料成型工藝及模具設計[M].機械工業(yè),2007(04):29-34.
[9] 馮剛,張朝閣,江平.我國注塑模具關鍵技術的研究與應用發(fā)展[J].塑料工業(yè),
2014(4):16-19.
[10] 許樹勤.模具設計與制造[M].北京:電子工業(yè)出版社,2014(11):38-41.
[11] 劉磊,吳建.液晶顯示器前殼注射模具設計[J].輕工機械,2013(6):9-12.
[12] 陳奕雄.電視機后殼注射模具設計[J].模具制造,2010(05):38-39.
[13] 李軼明.注射模中側向分型與抽芯機構的設計[J].科技情報開發(fā)與經(jīng)濟, 2007(21):250-251.
[14] 梁春鴻.數(shù)控技術在機械加工中的應用及其發(fā)展前景[J].中國高新技術企
業(yè),2015(5):62-63.
[15] 于同敏,劉鐵山.注塑模脫模機構智能化設計系統(tǒng)及關鍵技術研究[J].機械設計與制造,2004(2):72-75.
[16] Catalin?Fetecau.Felicia?Stan;Laurentiu I.Sandu .In-Mold?Mon
In-Mold?Monitoring of Temperature and Cavity Pressure During The Injection Molding Process[J].Proc. ASME.45813;Volume2:Processing, V002T02A062.June 2014(09):56-59.
[17] M. F. Alzoubi; Ma’moun Abu-Ayyad.Development of a Finite Model for Controlling a Mold’s Open/Close Process in an Injection Molding Machine[J].Proc. ASME. 54938; Volume 7: Dynamic Systems and Control; Mechatronics and Intelligent Machines, Parts A and B:745-749.January 2011(01):132-139.
[18] LI Ji-quan?, LI De-qun, GUO Zhi-ying, LV Hai-yuan .Single gate optimization for plastic injection mold. [J].Injection mold, Gate location, Optimization, Feature warpage jzus.2007(10):55-62.
附錄1:外文翻譯
注塑模具單門優(yōu)化
李繼權,李德群,郭志英,左海元
(上海交通大學塑性科技學院,上海200030)
?電子郵件:hutli@163.com
2010年11月22日收到; 修訂于2007年3月19日
摘要:
本文介紹了注塑模具單門位置優(yōu)化方法。 的目標門優(yōu)化是最大限度地減少注塑件的翹曲,因為翹曲是大多數(shù)關鍵的質(zhì)量問題注塑部件受到門位置的影響很大。 特征翹曲定義為最大比在特征表面上移動到特征表面的突出長度以描述部分翹曲。 優(yōu)化是結合數(shù)值模擬技術找到最佳門位置,其中模擬退火算法用于搜索最佳值。 最后,文中討論了一個例子,可以得出結論,提出的方法是有效的。
關鍵詞:注塑模具,澆口位置,優(yōu)化,特征翹曲
doi:10.1631 / jzus.2007.A1077文件編號:A中文編號:TQ320.66
介紹
注塑成型是廣泛應用的plex但是高效的生產(chǎn)技術各種塑料制品,特別是那些具有生產(chǎn)要求高,耐受性好,復雜的形狀。 注塑件的質(zhì)量是塑料,零件幾何,模具的功能結構和工藝件。 最重要的注塑模具的一部分基本上如下三套組件:腔,門和跑步者,和冷卻系統(tǒng)。Lam和Seow(2000)和Jin和Lam(2002)
通過改變壁厚來實現(xiàn)空腔平衡,的部分。 平衡填充過程中空腔產(chǎn)生均勻分布的壓力和溫度,這可以大大減少翹曲那個部分。 但空腔平衡只是其中之一部分品質(zhì)的重要影響因素。埃斯佩其次,該部分具有其功能要求厚度不應通常變化。從注塑模具設計的觀點來看,門的特點是其大小和位置,以及跑步系統(tǒng)的大小和布局。門尺寸流道布局通常被確定為常數(shù)。相對來說,門的位置和跑步者的大小更多靈活,可以變化影響質(zhì)量的部分。因此,他們通常是設計pa-優(yōu)化參數(shù)。Lee和Kim(1996a)優(yōu)化了大小
賽跑者和大門平衡流氓系統(tǒng),注射腔。跑步平衡是描述為入口壓力的差異具有相同空腔的多腔模具,以及在熔體流動結束時的壓力差異每個腔中的路徑為不同的家庭模具腔體積和幾何形狀。方法論顯示出均勻的壓力分布在多個模具的整個成型周期內(nèi)的空腔空腔模具。Zhai等(2005a)提出了兩個門一個成型腔的優(yōu)化優(yōu)化,基于壓力梯度的cient搜索方法(PGSS),然后將焊接線定位到
通過改變流道尺寸形成多門零件所需的位置(Zhai等,2006)。如大批量需要多個門來縮短最大值,媽媽流路,相應減少注射壓力。該方法是有希望的,一個單腔的門和跑步者的標志多個門生產(chǎn)許多注塑件有一個門,無論是在單腔模具還是在多腔模具。因此,門的位置單門是最常見的設計參數(shù)優(yōu)化。形狀分析方法是由Courbebaisse和Garcia(2002)發(fā)表,其中注射成型的最佳澆口位置為est-
交配。隨后,他們開發(fā)了這種方法 - 進一步應用于單門位置op-L形例子的定時化(Courbebaisse,2005)。而且易于使用,并不耗時它僅僅用于簡單的平板零件的轉動均勻厚度。Pandelidis和Zou(1990)提出了opti-門的位置,間接的質(zhì)量措施與翹曲和物質(zhì)退化有關被表示為溫度dif-絕對的術語,超額的術語和摩擦過熱期翹曲受上述影響因素,但它們之間的關系并不明確。因此,優(yōu)化效果受到限制確定加權因子。Lee和Kim(1996b)開發(fā)了一種自動化選擇方法的門位置,其中一組初始門位置由設計者提出那么最佳門由相鄰節(jié)點定位評估方法。結論在很大程度上很大程度上取決于人類設計師的直覺,因為該方法的第一步是基于設計師的主張。所以結果是一個大的ex-帳篷限于設計師的經(jīng)驗。Lam和Jin(2001)開發(fā)了一個門口基于最小化的優(yōu)化方法流路長度標準偏差(SD [L])和填充時間的標準偏差(SD [T])注塑過程。隨后,Shen等2004a; 2004b)優(yōu)化了門的位置設計通過最小化填充壓力的加權和,不同流路之間的填充時間差,
溫度差異和過度包裝百分比。Zhai等(2005b)研究了最佳門位置具有注射壓力的評估標準填充結束。這些研究人員提出了對象 - 作為注塑成型的功能灌裝操作與產(chǎn)品相關素質(zhì)。但是,肛門和質(zhì)量非常復雜,不明確他們之間已經(jīng)觀察到關系。它是也難以選擇合適的加權因子為每個術語。這里給出了一個新的目標函數(shù)
評估注塑件的翹曲優(yōu)化門位置。為了測量零件質(zhì)量二直觀地,這個調(diào)查定義了特征翹曲評估零件翹曲,從而評估Moldflow的“flow plus翹曲”模擬輸出塑料洞察(MPI)軟件。目標func-最小化以實現(xiàn)最小變形門位優(yōu)化。模擬退火al-采用算法搜索最優(yōu)門位置。給出一個例子來說明效果,提出優(yōu)化程序的精度。
質(zhì)量指標:特點
特征經(jīng)紗的定義
為了將優(yōu)化理論應用于門設計,必須在該部分中規(guī)定該部件的質(zhì)量措施第一個例子。術語“質(zhì)量”可以參考許多產(chǎn)品性能,如機械,熱,電氣,光學,人體工學或幾何支撐,ERTIES。有兩種類型的零件質(zhì)量措施:直接和間接。一種模型,數(shù)值模擬結果的關系將是其特征在于直接質(zhì)量測量。相反,零件質(zhì)量的間接測量與之相關目標質(zhì)量,但不能提供直接估計的質(zhì)量。對于翹曲,間接質(zhì)量措施相關作品是注射性能之一成型流動行為或加權總和。表現(xiàn)為填充時間dif-沿著不同的流動路徑,溫度差 - 重要的,超額的百分比等等。它是ob-那么翹曲受到這些表現(xiàn)的影響,肛門,但翹曲與這些之間的關系表演不清楚和決心這些加權因素相當困難。因此,用上述目標函數(shù)的優(yōu)化可能不會使部件翹曲最小化完善的優(yōu)化技術。有時,不正當加權因素將導致絕對錯誤的重新sults。一些統(tǒng)計量從節(jié)點位移被表征為直接的質(zhì)量措施達到最小變形相關優(yōu)化研究。統(tǒng)計量通常是最大節(jié)點位移,av-十分之一百分位數(shù)節(jié)點位移的損失,以及整體平均節(jié)點位移(Lee和Kim,1995; 1996年b)。這些節(jié)點位移很容易從仿真結果中可以看出,在某種程度上代表變形。但統(tǒng)計流離失所不能有效描述注射成型的變形部分。在行業(yè),設計師和制造商通常更加注重零件翹曲程度一些具體特點比整體變形注塑件。在這項研究中,特征翹曲定義為描述變形注塑件。特征翹曲是該比例特征面的最大位移
特征面的投影長度(圖1):
其中γ是特征翹曲,h是最大值特征面上的位移偏離參考平臺,L是投影長度
參考方向上的特征曲面平行參考平臺。
對于復雜的功能(只有平面功能這里討論的特征翹曲通常是sepa-在參考平面上分為兩個成分,它們在2D坐標系上表示:
其中γx,γy是組分特征翹曲X,Y方向,L x,L y為投影長度X,Y分量上的特征曲面。
功能翹曲評估
確定目標特征后加上相應的參考平面方向,可計算L值立即從部分與計算分析幾何的方法(圖2)。 L是一個常數(shù)對于指定特征表面上的任何部分,被拒絕的方向。 但是h的評估更多比L更復雜
注塑成型工藝的模擬是一個常用技術來預測零件的質(zhì)量標志,模具設計和工藝設置。 的結果翹曲模擬表示為節(jié)點去除,對X,Y,Z分量(W x,W y,W z)的折射率,節(jié)點位移W.W是向量的向量長度W x·i,W y·j和W z·k的和,其中i,j,k是單位矢量X,Y,Z分量。 h是最大值特征面上的節(jié)點位移,這與正常方向相關參考平面,并可以從中得出結果翹曲模擬為了計算h,第i個節(jié)點的偏轉是
首先評估如下:
其中W i是正常方向的偏轉第i個節(jié)點的參考平面; W ix,W iy,W iz是
第i個節(jié)點X,Y,Z分量的偏差; α,β,γ
是參考的法向量的角度; A和B是要突出的功能的終端節(jié)點方向(圖2); W A和W B是偏差節(jié)點A和B:
其中W Ax,W Ay,W Az是X,Y,Z上的偏轉節(jié)點A的組件; W Bx,W By和W Bz是除節(jié)點B的X,Y,Z分量的反射; ωiA和ωiB是終端節(jié)點的加權因子,
計算公式如下:
其中L iA是第i個節(jié)點之間的投影機距離和節(jié)點A.最終,h是最大值絕對值W
在行業(yè)中,翹曲的檢查是在一個測量儀的幫助下進行測量部分應放置在參考平臺上,形成。 h的值是最大值讀取測量部分之間的空間面和參考平臺。
GATE位置優(yōu)化問題公式
質(zhì)量術語“翹曲”是指永久 - 零件變形,這不是造成的施加的載荷。它是由差異收縮引起的在整個部分,由于聚合物的不平衡流動,包裝,冷卻和結晶。門在注射模具中的放置是總模具中最重要的變量之一設計。模制件的質(zhì)量非常高,受到門的位置的影響,因為它影響了塑料流入模腔的方式。因此,不同的門位置引入inho-方向,密度,壓力的大氣溫度分布,相應地引入不同的翹曲值和分布。因此,門位置是一個有價值的設計變量,以最小化注塑件翹曲。因為cor-門位置與翹曲分布之間的關系在很大程度上獨立于熔體和模具溫度,假設在這個調(diào)查中模具條件保持不變。該注塑部件翹曲由量化特征翹曲在前面討論過部分。單門位置優(yōu)化因此可以制定如下
其中γ是特征翹曲; p是注射門口壓力; p 0是允許的,注塑機的密封壓力或設計師規(guī)定的允許注射壓力或制造商; X是坐標矢量候選門位置; X i是有限的節(jié)點元件網(wǎng)格模型的注塑成型零件過程模擬; N是節(jié)點的總數(shù)。在有限元網(wǎng)格模型中,每個節(jié)點是門的可能候選。 那里-前面,可能的門位置總數(shù)N p是N個節(jié)點的總數(shù)的函數(shù)要優(yōu)化的門位數(shù)總數(shù)n:
在這項研究中,只有單門位置
問題被調(diào)查。
模擬退火算法
模擬退火算法是其中之一最強大和最受歡迎的元啟發(fā)式解決由于提供優(yōu)化問對現(xiàn)實世界的問題的全球解決方案。該算法基于Metropolis等人的算法(1953年),這是最初提出的一種手段找到一個收集的均衡配置原子在給定的溫度。連接是 -
補充該算法和數(shù)學最小化首先被Pincus(1970)注意到,但它是Kirkpatrick等人(1983)提出它形成組合優(yōu)化技術的基礎,(和其他)問題。為了將模擬退火方法應用于優(yōu)化問題,使用目標函數(shù)f作為能量函數(shù)E.而不是找到低的能量配置,問題成為尋求近似全局最優(yōu)解。配置 - 替代設計變量的值為身體的能量配置,和該過程的控制參數(shù)代替溫度。隨機數(shù)發(fā)生器用作a為設計變量生成新值的方式。很明顯,這個算法只需要mini-考慮到這些問題。因此,形成最大化問題的目標函數(shù) - 乘以( - 1)以獲得能力的形式。模擬退火的主要優(yōu)點其他方法的算法是避免的能力被困在當?shù)氐淖畹忘c。該算法em-隨機搜索,不僅可以接受減少目標函數(shù)f的變化,也是接受一些增加它的改變。后者是以概率p接受
其中的Δf是?F的增加中,k是玻爾茲曼常數(shù),牛逼是與之類似的控制參數(shù)原始應用程序被稱為系統(tǒng)“溫度”與目標函數(shù)無關參與其中。在門位優(yōu)化的情況下,
該算法的實現(xiàn)如圖3所示,該算法詳細說明如下:(1)SA算法從初始門限位置開始,具有“溫和”的分配值T k的“噸“參數(shù)T(”溫度“計數(shù)器?是初始設置為零)正確的控制參數(shù)c(0
收藏