畢業(yè)設計(論文)任務書I、畢業(yè)設計(論文)題目: 簡易吊車設計II、 畢 業(yè)設計(論文)使用的原始資料(數(shù)據(jù))及設計技術要求:設計一移動式簡易吊車,要求提升的最大重量為 G=750 公斤,提升的線速度為 ,提升的最大高度為 適用于機械加工車間小范smv/46.0?,5.2mH?圍內的起重和搬運。III、 畢 業(yè)設計(論文)工作內容及完成時間:1. 收集資料、外文資料翻譯、開題報告 (2 周)2 月 23 日-3 月 8 日 2. 總體方案的確定 (1 周)3 月 9 日-3 月 15 日 3. 參數(shù)確定及設計計算 (3 周)3 月 16 日-4 月 5 日 4. 簡易吊車裝配圖設計及零部件圖設計 (7 周)4 月 6 日-5 月 24 日 5. 撰寫畢業(yè)設計論文 (4 周)5 月 25 日-6 月 19 日 Ⅳ 、 主 要參考資料:[1] 璞良貴,紀名剛主編.機械設計.第七版.北京:高等教育出版社,2001[2]孫桓,陳作模主編.機械原理.第六版.北京:高等教育出版社,2002[3] 成大先主編.機械設計手冊.北京:化學工業(yè)出版社,2004[4] 趙學田主編.機械設計自學入門.北京:冶金工業(yè)出版社,1982[5] Ye Zhonghe, Lan Zhaohui. Mechanisms and Machine Theory. Higher Education Press, 2001.7班學生: 日期: 自 日指導教師:助理指導教師(并指出所負責的部分):教研室主任: 附注:任務書應該附在已完成的畢業(yè)設計說明書首頁。學士學位論文原創(chuàng)性聲明本人聲明,所呈交的論文是本人在導師的指導下獨立完成的研究成果。除了文中特別加以標注引用的內容外,本論文不包含法律意義上已屬于他人的任何形式的研究成果,也不包含本人已用于其他學位申請的論文或成果。對本文的研究作出重要貢獻的個人和集體,均已在文中以明確方式表明。本人完全意識到本聲明的法律后果由本人承擔。作者簽名: 日期:學位論文版權使用授權書本學位論文作者完全了解學校有關保留、使用學位論文的規(guī)定,同意學校保留并向國家有關部門或機構送交論文的復印件和電子版,允許論文被查閱和借閱。本人授權南昌航空工業(yè)學院可以將本論文的全部或部分內容編入有關數(shù)據(jù)庫進行檢索,可以采用影印、縮印或掃描等復制手段保存和匯編本學位論文。作者簽名: 日期:導師簽名: 日期: 畢業(yè)設計(論文)開題報告題目 簡易吊車設計專 業(yè) 名 稱 機械設計制造及其自動化班 級 學 號 學 生 姓 名 指 導 教 師 填 表 日 期 年 1 月 5 日1選題的依據(jù)及意義:1.選題的依據(jù):該課題和本專業(yè)有關,符合本專業(yè)的培養(yǎng)目標及教學基本要求,能檢驗自己四年來的學習情況是否能夠學以致用,同時也和本人未來的工作方向緊密相關。2.選題的意義:隨著社會的發(fā)展,人類生活水平的提高。機械制造自動化技術也因與人類生活密切相關而成為機械制造中最活躍的一個研究領 。制造技術是以 制造技術與計 機技術 技術 自動 制技術 高 技術 合的 ,是一個 機械 與 技術 一 的 學 , 制造技術的技術和水平發(fā)生 ?的¢化。隨著£?機械化的發(fā)展,中 ¥ 機械設?§來§currency1的'用 “?“業(yè)。? 人?fifl有 以及人?的– ?,?·currency1人? ??成?'的時?,£”?currency1的會…‰用一 機? 人?,‰`設?′??而ˉ。吊車?為‰`設?的一 , ˙有¨作簡 易 ?動 用?活方 ???ˇ — ,簡易吊車? 動機 動和一開 動, '動和動? , ?和 a提 ` 。2國內外研究概況及發(fā)展趨勢(含文獻綜述):隨著 技化 的??? ,高 技的'用§來§currency1,¥ 設? 高o 高要求的機?的 求 也?? 。以 的吊車也? 工?和社會的要求 ,為 ,吊車業(yè)的 ?和技術? ????。吊車? 設計的 論 方?與工˙是基 設計 論和方?,?用 學技術,以提高 ? 用 意的價格和造 提高 的功能 縮短 開發(fā)周期為目的而 ?的相?工作。吊車? 論 方?與技術研究的宗旨是從吊車作為特 設?所要求的安全?和可靠?的工作目標ˉ發(fā),?特定技術? 濟?約束條件下,?造?地?成吊車的? 設計, 其? 用 貨期和?能要求的 提下?到技術?與 濟?最佳搭配。中?的吊車設計的發(fā)展 歷 一個曲折的 。以 currency1是以模仿原蘇聯(lián)的設計為主,憑借設計者的 驗, 設計的– ?·¥。從60年 ‰,開始 部件的開發(fā)設計與實驗研究工作,從而 設計從仿制和 驗設計?漸走向實驗研究和計 分析階段。到 80年 ,隨著寶 一些超¥ 企業(yè) ?外‰`機的引 及與?外 ?聯(lián)合設計 ? 制造 形 的采用,開始?? 引入 一些?際 的先 技術與設計方?。同時 計 機?用技術引入設計領 , 吊車設計工作的發(fā)展‰ ·¥的?動作用。 3研究內容及實驗方案: 3.課題研究的主要 容:本課題主要是簡 吊車的設計,也′是簡易吊車的 構設計方案分析及其設計計 ,以及 動裝置的設計分析計 并確定。4.課題研究的實驗方案:1) 簡易吊車設計的初?方案根據(jù)先選擇的工作機構擬定“零部件,初?計 確定工作機構的 號, 設計與計 動裝置,確定 動方案,畫ˉ 動示意圖。最后依據(jù)所有的數(shù)據(jù)及圖形,畫制動 裝置和 裝置的 構圖,然后拆畫全部零件工作圖, ?穩(wěn)定?效核。2) 動裝置設計的初?方案①根據(jù) 的功率和轉速,選擇 動機。②確定 動方案,畫ˉ 動示意圖,并分配 動比。5目標、主要特色及工作進度主要目標:能學到?currency1的知識,為今后工作打下良好的基礎。主要特色:能較熟練?用Matlab軟件 Word軟件及AUTOCAD2009軟件來協(xié)助本次課設計。工作 :2月23日-3月8日fi 外文fi 開題報告。3月9日-3月15日方案的確定。3月16日-4月5日數(shù)確定及設計計 。4月6日-5月24日簡易吊車裝配圖設計及零部件圖設計。5月25日-6月19日畢業(yè)設計論文。 期目標:2008年6月20號 ?成畢業(yè)設計論文, 分 ?畢業(yè) 五、參考文獻1 良 , 名 主 。機械設計。 。 :高 教?ˉ 社,2001.2 , 作模主 。機械原 。 。 :高 教?ˉ 社,2001.3 成¥先主 。機械設計 。 化工工業(yè)ˉ 社,2004.4 學 主 。機械設計自學入 。 : ?工業(yè)ˉ 社,1982.5 ¢£ ?¥o?§¥£currency1'a? ?¥ao¥“?.M£?¥a???fi? T¥£orfl. ?§¥£r –d“?at?o??r£??currency12001.?.簡易吊車設計學生姓名:指導老師:摘要:本課題的目的就是設計一簡易吊車來代替人力實現(xiàn)重物的搬運。該吊車的工作原理是:由電動機經(jīng)帶輪傳動和一對開式齒輪傳動,將運動和動力傳給卷筒,再通過鋼絲繩和滑輪組來提升重物。通過任務書中的條件參數(shù),設計計算相關的數(shù)據(jù),選擇鋼絲繩的種類和型號,進而計算出卷筒和滑輪的直徑,確定一些其它的標準零部件。在此基礎上進行傳動裝置的設計和計算,完成其進行結構設計,工作主要包括完成了軸的設計、確定了帶輪的結構、齒輪的結構、卷筒的結構、滑輪的結構 、伸臂桿和支撐桿的結構,繪制了繪制了吊車的總裝配圖、制動輪裝置和卷筒裝置的結構圖,完成部分零件工作圖的設計。關鍵詞:簡易吊車 設計計算 結構設計 指導老師簽名:Simple design of the cable carStudent’s name: Class: Supervisor: Abstract: The purpose of this project is to design a simple realization of the cable car to replace the human handling of heavy weights. The working principle of the cable car is: by the motor via a pulley drive and gear drive off, the movement and momentum to the drum, and then through the rope and pulleys to raise heavy objects group. Conditions through the parameters of the task book, design and calculation of relevant data, select the type and model of wire rope, and then calculated the diameter of the drum and pulley, to identify a number of other parts of the standards. Carried out on the basis of gear design and calculation, to complete its structural design, primarily include the completion of the design of the shaft to determine the structure of the pulley, the gear structure of the drum structure, block structure, under and the supporting bar of the structure, rendering a total mapping of the crane assembly, brake drum round of devices and device structure, the completion of the work of some parts of the design plans.Keyword: Simple cable car Calculation Structural DesignSignature of Supervisor: 一、設計參數(shù)1.起吊重量1/t ,起吊速度0.5/(m/s),卷筒直徑100/mm2.工作年限為12年,兩班制工作,小批量生產(chǎn)二、主要內容1.總體方案分析、設計;2.傳動總體方案設計;3.傳動零件的設計、計算;4.總體裝配圖和零件工作圖繪制; 目 錄1 緒論 ………………………………………………………………………(1)1.1 吊車的歷史 ……………………………………………………………… (1)1.2 吊車國內外的研究現(xiàn)狀 ………………………………………………… (1)1.3 吊車的發(fā)展趨勢 ………………………………………………………(2)2 工作機構的設計…………………………………………………………(4)2.1 鋼絲繩的選擇 ……………………………………………………………(4)2.1.1 鋼絲繩的種類 …………………………………………………………(4)2.1.2 鋼絲繩的型號…………………………………………………………(4)2.1.3 鋼絲繩直徑的選擇……………………………………………………(5)2.2 卷筒和滑輪直徑的選擇 …………………………………………………(5)3 傳動裝置的設計和計算……………………………………………… (7)3.1 計算卷筒的功率 ………………………………………………………… (7)3.2 計算卷筒的轉速 ………………………………………………………… (7)3.3 電動機的選擇 …………………………………………………………… (7)3.3.1 電動機類型的選擇 ………………………………………………… (7)3.3.2 電動機轉速的選擇 ………………………………………………… (8)3.3.3 電動機功率的選擇 ………………………………………………… (8)3.4 計算總傳動比…………………………………………………………… (8)3.5 確定傳動方案,畫出傳動示意圖……………………………………… (9)3.6 分配傳動比……………………………………………………………… (9)3.7 計算效率。驗算電動機的功率…………………………………………(10)3.8 計算各軸的轉速、功率和轉矩…………………………………………(10)3.9 制動器的選擇……………………………………………………………(12)3.10 傳動機構的設計和計算 ……………………………………………… (13)3.10.1 帶傳動 ……………………………………………………………… (13)3.10.2 齒輪傳動 …………………………………………………………… (15)3.11 畫出總體結構方案圖 ………………………………………………… (16)4 結構設計 ……………………………………………………………… (17)4.1 初算各軸的最小直徑……………………………………………………(17)4.2 帶輪的結構………………………………………………………………(18)4.3 齒輪的結構………………………………………………………………(19)4.4 卷筒的結構………………………………………………………………(20)4.5 滑輪的結構………………………………………………………………(21)4.6 升臂桿和支撐桿的結構…………………………………………………(21)4.6.1 升臂桿和支撐桿的尺寸………………………………………………(21)4.6.2 根據(jù)強度條件、決定升臂桿的材料和斷面尺寸……………………(22)4.6.3 根據(jù)強度條件,決定支撐桿的材料和斷面尺寸……………………(25)4.7 畫制動輪裝置和卷同裝置的結構圖 ……………………………………(26)4.8 繪制吊車的總裝配圖 ……………………………………………………(26)4.9 拆畫重要零件圖 …………………………………………………………(26)5 設計小結 …………………………………………………………………(27)5.1 小結 ………………………………………………………………………(27)5.2 設計心得 …………………………………………………………………(27)參考文獻………………………………………………………………………(29)致 謝……………………………………………………………………………(30)1M. Suk Effect of mechanical design of the suspension on dynamic loading processReceived: 2 July 2003 / Accepted: 24 February 2004 / Published online: 3 August 2005_ Springer-Verlag 2005Abstract: In designing a load/unload system utilized in hard disk drives, necessary care needs to be taken to ensure that the slider does not damage the disk surface during loading and unloading processes. However, a small deviation in the design point of the preload between the load-dome and flexure can lead to undesirableloading processes resulting in an adverse number of slider/disk contacts. In this study, we show that if the preload between the load-dome and flexure is too low, the slider can oscillate causing the corners of the slider to contact the disk multiple times even though the slider is a few microns away from the disk. In addition, the slider can be sucked down towards the disk resulting in a complete separation of the load-dome from the flexure assembly leading to uncontrolled loading conditions.This separation occurs while the suspension is still on the ramp, and thus no preload is exerted on the slider immediately following the separation. Consequently, the slider flies at a flying height higher than the design point until the gap between the load-dome and flexure closes. Hence, the suspension must be carefully designed to suppress slider oscillation and to ensure that the loaddome does not separate during the loading process.1 IntroductionOne of the requirements in designing a load/unload system utilized in hard disk drives is ensuring that the slider does not damage the disk surface during loading and unloading processes. Since it is difficult to avoid slider/disk contacts in entirety, however, the system is designed to minimize the number of slider/disk contact events and to lessen the consequences when contacts do occur. The likelihood of slider/disk contacts depends on the loading speed, disk speed, static attitude of the slider, air-bearing roughness, slider geometry, etc. For example, sliders with a large radius of curvature at its corners can eliminate disk damage by reducing the contact stress between the slider and disk surface (Suk and Gillis 1998). Many recent studies have considered the effect of suspension, limiter, and air-bearing designs on the robustness of the loading and unloading processes (Bogy and Zeng 2000; Hua et al. 2001; Liu and Zhu 2001; Zeng and Bogy 2000). Howeve2r, most of these studies have primarily focused on the unloading process since this part of the sequence usually reveals interesting dynamic processes due to the effects of negative pressure airbearing designs. The negative pressure region of the airbearing resists the unloading action resulting in storage of potential energy in the flexure and suspension assembly.When the slider is finally pulled away from the disk and the potential energy is released, the slider can oscillate violently (Fig.1). On the other hand, for areasonably well-designed system, the loading process does not exhibit such a behavior. Hence, most have primarily investigated the unloading process giving onl a cursory attention to the more critical loading process. Most designers of load/unload systems will find that the loading process can be more troublesome compared to the unloading process. Besides potentially causing damage to the disk, other problems can be encountered during the loading process. For example, in some instances, the slider may never load to the designed flying height, but rather, load at flying heights on the order of 1 lm (Suk et al. 2004). In this paper, we show how a small deviation in the mechanical design of the flexure/suspension assembly can increase the probability of slider/disk contacts that can lead to a significant number of disk contacts in one single load cycle. Specifically, we show that a suspension system with low preload between the flexure and loaddome can lead to loading of the slider at an uncontrolled static attitude and velocity. The problems associated with this particular aspect of design can be easily identified by measuring the full-body capacitance during the loading process.2 Description of experimentThe slider loading dynamics was investigated using a laser-Doppler vibrometer (LDV), 62 kHz frame rate high-speed camera, and full-body capacitance. The experimental setup consists of a standard load/unload tester. The capacitance meter measures the full-body capacitance between the slider and disk while the slider is loading onto the disk, similar to the one used in (Suk et al. 2004). The slider was loaded onto and unloaded from the disk using a moving ramp wh3ile keeping the slider/suspension assembly fixed over the OD region of the disk. The vertical motion of the trailing edge of the slider was measured using an LDV. All tests were carried out using an 84 mm glass disk and a negative pressure bobsled type slider with the disk rotating at 10 krpm. The pitch-static attitude (PSA) of the sliders used in the experiment was between 1 and 2_. To show the effect of lack of preload between the flexure and load-dome, we chose two suspension assemblies that are essentially identical with the exception of the preload. Since the difference in the magnitude of the preload is difficult to measure, only the existence of substantial difference is verified. To do this, we mount the head suspension assembly with normal preload (NPHSA) onto the ramp. A small weight, that is sufficient to cause load-dome separation from the flexure, is then attached to the flexure. The amount of separation is measured with a properly positioned CCD camera.Similar measurement is made for a head suspension assembly with low preload (LP-HSA). Figures 2 and 3 show optical images of the load-dome and flexure taken under the same conditions for both NP-HSA and LPHSA, respectively. A greater load-dome separation from the flexure is observed for LP-HSA than the NP-HSA, confirming that LP-HSA has lower preload than NPHSA. 3 Results and discussion negative pressure sliders The slide4r loads onto the disk and then follows the runout of the disk as expected. The bottom plot in Fig.3 is the corresponding full-body capacitance measurement, which shows a single jump in the capacitance at the moment the slider loads onto the disk. A similar measurement for LP-HSA is shown in Fig.5. In this case, the slider oscillates before loading onto the disk unlike the case with a higher preload between the load-dome and flexure. Furthermore, the slider’s vertical loading velocity suddenly increases when the slider is about 50 lm away from the disk. Associated with this sudden increase in the velocity, the capacitance measurement reveals multiple sharp transitions. Following the transitions, the capacitance does not reach the maximum value for another 1 ms or so. These observations indicate a problem, but it is difficult to ascertain the precise dynamics due to the low measurement bandwidth. Higher resolution measurement reveals that the slider contacts the disk multiple times (Fig.6)—note that this exact behavior does not occur for every suspension assembly, but varies from one suspension to another. Figure6 shows simultaneous measurement of full-body capacitance and LDV during loading for LP-HAS immediately before fully loading onto the disk surface. Capacitance measurement shows some oscillation about 2 ms before a step-like jump is observed. Note that the average height of the slider during these oscillations is on the order of a few microns. At this height, the suspension preload (not the preload between the flexure and load-dome) is still supported by the ramp. The LDV measurement shows that the slider actually contacts the disk and bounces on-and-off the disk oscillating at the same frequency as that of the measurement made with the capacitance meter. The slider then settles into what appears to be a loaded position, but the capacitance measurement shows that the slider has not fully reached the nominal flying height position—the capacitance measurement is slightly lower in magnitude than the final value. It takes another 4 ms or so before the slider finally loads fully into the nominal flying height. Surprisingly, LDV is also able to measure this latter process as well. The corresponding arm mounted acoustic emission measurement shows slider/disk contact Fig. 4 Top LDV measurement of the loading motion of the trailing edge of the slider for a system with normal preload between the load-dome and flexure. Bottom Full-body capacitance measurement, which shows a single sharp transition as the slider loads onto the diskverifying the LDV and capacitance measurements of slider–disk contact (Fig.7). The sligh5t delay in the AE signal is due to the fact the sensor is mounted at the suspension mount point, which is far removed from the location of the contact point. Another example of the loading process is shown in Fig.8 showing a similar behavior.The bounce followed by oscillations and slow settling into the nominal flying height has not been reported before. The reason for the observed deviation is due to the lack of preload between the slider and load-dome. During the loading process, the lack of preload results in oscillation of the slider as seen in Fig.5. This oscillation results in the slider corner contacting the disk multiple times when the slider comes close (on the order of a few microns) to the disk. Then, as the slider comes even closer to the disk, the negative suction force pulls the slider towards the disk separating the load-dome from the flexure. Under certain circumstances, the slider actually can also contact the disk during this phase of the process while the load/unload tab is still sliding on the ramp and the slider is a fraction of a micron away from the disk (Fig.9). This phenomenon is easy to see using a high-speed camera. A set of images captured with a high-speed camera for LP-HSA case is shown in Fig.10. It clearly shows load-dome separation from the flexure resulting in a partial loading on the disk while the load/unload tab is still on the ramp. In this particular case, we were unable to capture the slider/disk contacts using the high-speed camera. The initial phase of the measurements shown in Fig.5 is quite repeatable, i.e. the initial oscillation can be observed every time. However, the slider disk contact is not fully repeatable since this depends on many other parameters, such as, the vertical velocity of the disk at the time of loading and random excitation of the system due to airflow and mechanical vibrations. The suction force that causes the slider to jump towards 6the disk is due to a negative pressure force resulting from negative PSA of the slider relative to the disk surface. The relative PSA is usually negative while the suspension is on the ramp although the absolute PSA may be positive. As the suspension moves across the ramp, the relative PSA constantly changes ultimately reaching the absolute PSA value immediately before loading. During the time the relative PSA is negative, the negative pressure force will try to pull the slider towards the disk. If the sum of the flexure stiffness and the preload between the flexure and load-dome is less than this negative force exerted on the slider, the slider will move towards the disk at speeds higher than the desired speed separating the flexure from the load-dome. Furthermore, since the load-dome is separated from the flexure seen in Fig.10, there is no preload on the slider to push the slider towards the disk. As the gap between the load-dome and flexure closes and the preload of the suspension is transferred from the ramp to the slider, the slider is finally pushed into the nominal flying height as indicated by the final small increase in the capacitance and decrease in height as shown in the LDV measurements(Figs.4, 5, 7, 8). 4 Summary and conclusion Recent articles on load/unload have mainly dealt with the unloading process since the unload dynamics of negative pressure slider reveals an interesting behavior unlike the loading process. However, much more attention to detail is required for the loading process than the unloading process, since the affinity to cause disk damage is much greater during the former process than the latter. In this 7paper, we show that a small deviation in the design point of the preload between the load-dome and flexure can lead to adverse loadingprocesses resulting in an undesirable number of slider/ disk contacts.We show that if the preload between the load-dome and flexure is too low, the slider can oscillate and contact the disk multiple times even when the slider is a few microns away from the disk. Furthermore, we show that the slider can also be pulled down towards the disk completely separating the load-dome from the flexure assembly. This results in slider contacting the disk at an uncontrolled speed that can also lead to disk damage.The separation occurs while the suspension is still on the ramp, and thus there is no preload on the slider following the separation. This lack of preload allows the slider to fly at high flying heights until the gap between the flexure and load-dome closes. Hence, a prudent design of the suspension assembly is required to ensure that the combination of the flexure stiffness and the preload between the load-dome and suspension will be significant enough to defeat the negative pressure force keeping the load-dome attached to the suspension at all times and to suppress slider oscillations before loading.8ReferencesBogy DB, Zeng QH (2000) Design and operating conditions for reliable load/unload systems. Tribol Int 33(5–6):357–366Hua W, Liu B, Sheng G, Li J (2001) Further studies of unload process with a 9D model. IEEE Trans Magn 37(4):1855–1858Liu B, Zhu LY (2001) Experimental study on head disk interaction in ramp loading process. IEEE Trans Magn 37(4):1809–1813Suk M, Gillis D (1998) Effect of slider burnish on disk damage during dynamic load/unload. ASME J Tribol 120(2):332–338Suk M, Ruiz O, Gillis D (2004) Load/unload systems with multiple flying heights (presented at the 2002 ASME/STLE international tribology conference, Cancu n, Mexico). ASME J Tribol 126(2):367–371Zeng QH, Bogy DB (2000) Effects of certain design parameters on load/unload performance. IEEE Trans Magn 36(1): 140–1479M. Suk D. Gillis影響機械設計暫停動態(tài)加載過程收稿: 2003 年 7月 2 /接受: 2004 年 2月 24日/網(wǎng)上公布: 2005 年 8月 3 _斯普林格 2005年摘要:設計一個加載/卸載系統(tǒng)中使用的硬盤驅動器,必要時需要注意,確保在裝貨和卸貨過程不會損害滑塊碟片的表面。因為,在設計點的預負荷之間的穹頂和彎曲的一個小偏差可能會導致不良進程載入,造成一些滑塊/磁盤不利的接觸。在這項研究中,我們發(fā)現(xiàn),如果預之間的負載圓頂和彎曲太低,滑塊的擺動可能會造成角落的滑塊接觸磁盤過多,使滑桿遠離磁盤幾微米。此外,滑塊可吸入下跌對磁盤造成了完全分離的負載圓頂,使柔性裝配導致失控的負載條件。這種分離的情況仍然暫停在坡道,因此沒有施加預壓的滑塊立即分離。因此,滑塊蒼蠅在飛行高度高于設計點,直到負載圓頂和彎曲之間的差距為零。因此,必須認真地暫停旨在制止滑塊振蕩,并確保不單獨在負荷盤加載過程。1導言 其中一項要求設計 一個加載/卸載系統(tǒng)中使用的硬盤 驅動器是確保在裝貨和卸貨過程滑 塊不會損害碟片表面。因為這是難 以避免滑塊/磁盤接觸的全部內容, 因為,該系統(tǒng)是為了盡量多的減少 滑桿/磁盤接觸事件和接觸的后果 的發(fā)生?;瑝K/磁盤接觸發(fā)生接觸 的可能性取決于加載速度,硬盤速 度,靜態(tài)的態(tài)度滑塊,空氣軸承粗 糙度,滑塊幾何等。例如滑塊大曲率半徑的彎道可以消除磁盤損害,降低接觸應力之間的滑塊和磁盤表面(Suk and Gillis 1998) 。許多最近的研究認為,影響暫停與限制器和空氣軸承設計的魯棒性和裝卸過程有關(Bogy and Zeng 2000; Hua et al. 2001; Liu and Zhu 2001; Zeng and Bogy 2000) 。不過,這些研究主要集中在卸貨的過程,因為這部分序列通常揭示有趣的動態(tài)過程的影響和負壓空氣軸設計。負壓區(qū)域空氣軸抗拒卸貨行動導致的潛在能量儲存在彎曲和懸掛裝備中.當滑塊終于脫離磁盤,勢能釋放,滑塊振蕩劇烈。另一方面,10為合理的設計系統(tǒng),加載過程并沒有表現(xiàn)出這樣的行為。因此,大多數(shù)國家都已經(jīng)在主要調查卸載進程給予粗略注意更重要的加載過程。大多設計師的加載/卸載系統(tǒng)會發(fā)現(xiàn),加載過程可以比卸載過程更麻煩,。除了可能造成損害的磁盤,其他問題都可以遇到的加載過程。例如,在某些情況下,滑塊可能永遠無法達到負荷的設計飛行高度,而是在飛行高度負荷的命令 1流明(Suk et al. 2004) 。在本文中,我們顯示一個小偏差的機械設計的彎曲/暫停大會可以增加概率滑塊/磁盤接觸,可能導致大量的磁盤接觸單一負載周期。具體來說,我們表明,懸掛系統(tǒng),低預彎曲之間和負荷盤可能導致裝載的滑塊不受控制靜態(tài)的態(tài)度和速度。相關問題這方面的設計可以很容易地確定測量全身電容在加載過程。2描述的實驗滑塊載入中動態(tài)進行了研究用激光多普勒測振儀(激光多普勒) , 62千赫的幀速率的高速攝像頭,全身電容。實驗裝置包括一個標準的加載/卸載測試。電容米措施全身電容之間的滑塊和磁盤而滑塊裝上磁盤,一個類似于用在(Suk et al. 2004) ?;瑝K裝上和卸下磁盤使用移動坡道,同時保持滑塊/暫停固定的外徑地區(qū)的磁盤。垂直運動的后緣的滑桿是用激光多普勒測量。所有的測試使用 84毫米玻璃磁盤和負壓雪橇型滑塊與磁11盤旋轉 10 krpm進行。球場靜態(tài)態(tài)度(簡稱 PSA )的滑塊用于實驗是介于 1和 2_ 。顯示效果缺乏預彎曲之間和負載圓頂,我們選擇兩個暫停集會是基本相同,除預裝。由于不同程度的預是難以衡量的,只有存在大量不同的是核實。要做到這一點,我們掛載頭部懸掛大會正常預( NPHSA )進入坡道。一個小型的重量,這是足以造成負載穹頂脫離彎曲,然后附在彎曲。分離的數(shù)量來衡量一個適當?shù)奈恢?CCD相機。類似的測量是用于頭部暫停低大會預裝(唱片白蛋白)。圖2和圖3顯示的光學圖像的負載圓頂和彎曲采取相同的條件下為 NP一人血清白蛋白和 LPHSA分別。更大的負載穹頂脫離彎曲是觀察唱片白蛋白比 NP一人血清白蛋白,確認唱片白蛋白低預比 NPHSA 。 3結果與討論負壓滑塊滑塊負載到磁盤,然后按照跳動磁盤預期。底部的陰謀是在圖 3的相應全身電容測量,這表明在一個單一的跳轉電容此刻滑塊負載到磁盤。類似的測量唱片- HSA的是顯示在圖 5 。在這種情況下,將滑塊振蕩在裝貨前到磁盤的情況不同,具有較高的預壓荷載圓頂和彎曲。此外,滑蓋的垂直加載速度突然增加時,滑塊約為 50流明遠離磁盤。與此相關的突然增加,速度,電容測量顯示多個急劇轉變。繼過渡,電容不能達到的最高值為另一個 1毫秒左右。這些意見表明一個問題,但很難確定確切的動態(tài),由于低測量帶寬。更高分辨率的測量表明,滑塊接觸磁盤多次(圖6 ) ,注意,這完全行為不會發(fā)生,每暫停大會,但不同暫停到另一個。圖6顯示同步測量全身電容和激光多普勒在裝貨唱片,已立即在完全加載到磁盤的表面。電容測量表明一些振蕩約2毫秒之前的一個步驟樣跳轉得到遵守。請注意,平均身高滑塊在這些振蕩是對秩序的幾個微米。在這一高度,暫停預(而不是預之間的柔性和負載圓頂)仍然是支持的坡道。在激光多普勒測量結果表明,滑塊實際接觸磁盤和彈跳上和12從磁盤振蕩在相同的頻率,在測量與電容米?;瑝K然后解決什么似乎是一個加載的位置,但電容測量表明,該滑塊沒有完全達到了標稱飛行高度位置的電容測量略低規(guī)模比最后的值。另需4 毫秒或之前滑塊最后負荷充分融入名義飛行高度。令人驚訝的是,激光多普勒也是能夠衡量后者的進程。相應的胳膊安裝聲發(fā)射測量表明滑塊/磁盤聯(lián)絡圖。 4頂級激光多普勒測量負荷運動后緣的滑塊的系統(tǒng)之間的正常預負荷圓頂和彎曲。底部全身電容測量,這顯示出急劇轉型滑塊負載到磁盤核查激光多普勒和電容測量滑塊磁盤接觸(圖7 ) 。稍有延誤,聲發(fā)射信號的原因是傳感器安裝在減震器點,這是遠離的位置,聯(lián)絡點。另一個例子是在加載過程中顯示圖8顯示了類似的行為。隨后的反彈振蕩和緩慢的名義解決飛行高度還沒有報告過。的原因,觀察偏差是由于缺乏預之間的滑塊和負載圓頂。在裝載過程中,缺乏預結果振蕩滑塊看到的圖。這種振蕩的結果滑塊角落接觸磁盤多次當滑塊接近(在命令幾微米)的磁盤。然后,將滑塊來更接近盤,負吸力量拉動滑塊對分離的磁盤負載圓頂從彎曲。在某些情況下,將滑塊還可以聯(lián)系實際的磁盤在此階段的進程,而加載/卸載選項卡仍然是滑動的坡道和滑塊的一小部分微米遠離磁盤(圖 9 ) 。這種現(xiàn)象很容易看到使用高速攝像頭。一組拍攝 與一個高速攝像機唱片- HSA的案件中顯示圖。這清13楚地表明負載穹頂脫離彎曲造成了部分負荷,同時在磁盤上的加載/卸載選項卡仍然在坡道。在這種情況下,我們無法捕捉滑塊/磁盤接觸,利用高速攝像頭。初期階段的測量顯示在圖 5是相當重復的,即 初始振蕩可以看到每一次。然而,滑塊磁盤聯(lián)系不完全重復的,因為這取決于許多其他參數(shù),如垂直速度的磁盤在裝載時和隨機激勵的制度,由于氣流和機械振動。吸力的力量,使滑塊跳轉對磁盤是由于負面壓力變壓吸附造成負面的滑塊相對于硬盤的表面。相對港務集團通常是消極的,而暫停的坡道上雖然絕對港務集團可能是積極的。作為全國暫停行動的坡道,相對港務集團不斷變化最終達到絕對港務集團價值立即在裝貨前。在時間的相對港務集團是否定的,消極的壓力將嘗試拉滑塊對磁盤。如果總和彎曲剛度和預緊力之間的柔性和負載圓頂不到這種消極力量施加的滑塊,滑塊將走向磁盤的速度高于預期的速度分離彎曲的負載圓頂。此外,由于負載圓頂是分開彎曲,圖中可以看出,沒有預裝的滑桿推動滑塊實現(xiàn)磁盤。隨著之間的差距負載圓頂和彎曲關閉和預緊暫停從坡道滑塊,滑塊終于被推到名義飛行高度所示的最后略有增加電容和降低高度所顯示的 LDV測量 (圖.4 , 5 , 7 , 8 ) 。 4摘要和結論最近文章加載/卸載主要處理過程,因為卸載的卸載動態(tài)負壓滑塊揭示了一個有趣的行為不同,加載過程。然而,更多 注重細節(jié)是需要加載過程比卸貨過程中,由于親造成磁盤損害要大得多前進程在比后者。在本文中,我們表明,一個小偏差在設計點的預負荷之間的穹頂和彎曲可能會導致不良載入中 進程造成不良一些滑桿/磁盤接觸。 我們發(fā)現(xiàn),如果預之間的負載圓頂和彎曲太低,滑塊可以擺動和接觸磁盤多次即使滑桿是幾微米遠離磁盤。此外,我們表明,滑塊也可以推倒對磁盤完全分開的負載圓頂從彎曲大會。這樣的結果是滑塊接觸磁盤上失控速度也可能導致硬盤損壞。14分離時發(fā)生暫停仍然在坡道,因此沒有預裝以下的滑塊分離。這種缺乏預使滑塊飛行,飛行高度高,直到之間的差距彎曲和負載圓頂關閉。因此,謹慎的設計暫停大會必須確保該組合彎曲剛度和預緊力之間的負載圓頂和暫停將是很大的,足以承載負面壓力保持負載圓頂重視暫停任何時候,以制止在裝貨前滑塊振蕩。15參考資料Bogy DB, Zeng QH (2000) Design and operating conditions for reliable load/unload systems. Tribol Int 33(5–6):357–366Hua W, Liu B, Sheng G, Li J (2001) Further studies of unload process with a 9D model. IEEE Trans Magn 37(4):1855–1858Liu B, Zhu LY (2001) Experimental study on head disk interaction in ramp loading process. IEEE Trans Magn 37(4):1809–1813Suk M, Gillis D (1998) Effect of slider burnish on disk damage during dynamic load/unload. ASME J Tribol 120(2):332–338Suk M, Ruiz O, Gillis D (2004) Load/unload systems with multiple flying heights (presented at the 2002 ASME/STLE international tribology conference, Cancu n, Mexico). ASME J Tribol 126(2):367–371Zeng QH, Bogy DB (2000) Effects of certain design parameters on load/unload performance. IEEE Trans Magn 36(1): 140–147