高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 第四篇 第2講 函數(shù)與導(dǎo)數(shù)課件.ppt
《高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 第四篇 第2講 函數(shù)與導(dǎo)數(shù)課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 第四篇 第2講 函數(shù)與導(dǎo)數(shù)課件.ppt(67頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2 函數(shù)與導(dǎo)數(shù) 第四篇回歸教材 糾錯(cuò)例析 幫你減少高考失分點(diǎn) 要點(diǎn)回扣 易錯(cuò)警示 查缺補(bǔ)漏 欄目索引 要點(diǎn)回扣 1 求函數(shù)的定義域 關(guān)鍵是依據(jù)含自變量x的代數(shù)式有意義來(lái)列出相應(yīng)的不等式 組 求解 如開(kāi)偶次方根 被開(kāi)方數(shù)一定是非負(fù)數(shù) 對(duì)數(shù)式中的真數(shù)是正數(shù) 列不等式時(shí) 應(yīng)列出所有的不等式 不應(yīng)遺漏 對(duì)抽象函數(shù) 只要對(duì)應(yīng)關(guān)系相同 括號(hào)里整體的取值范圍就完全相同 1 1 1 2 用換元法求解析式時(shí) 要注意新元的取值范圍 即函數(shù)的定義域問(wèn)題 問(wèn)題2已知f cosx sin2x 則f x 1 x2 x 1 1 3 分段函數(shù)是在其定義域的不同子集上 分別用不同的式子來(lái)表示對(duì)應(yīng)關(guān)系的函數(shù) 它是一個(gè)函數(shù) 而不是幾個(gè)函數(shù) 4 判斷函數(shù)的奇偶性 要注意定義域必須關(guān)于原點(diǎn)對(duì)稱 有時(shí)還要對(duì)函數(shù)式化簡(jiǎn)整理 但必須注意使定義域不受影響 f x f x f x 為奇函數(shù) 奇 5 求函數(shù)單調(diào)區(qū)間時(shí) 多個(gè)單調(diào)區(qū)間之間不能用符號(hào) 和 或 連接 可用 及 連接 或用 隔開(kāi) 單調(diào)區(qū)間必須是 區(qū)間 而不能用集合或不等式代替 0 0 6 弄清函數(shù)奇偶性的性質(zhì) 1 奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性 則其單調(diào)性完全相同 偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性 則其單調(diào)性恰恰相反 2 若f x 為偶函數(shù) 則f x f x f x 3 若奇函數(shù)f x 的定義域中含有0 則必有f 0 0 f 0 0 是 f x 為奇函數(shù) 的既不充分也不必要條件 A 上的減函數(shù)B 上的增函數(shù)C 1 1 上的減函數(shù)D 1 1 上的增函數(shù) 解析由題意可知f 0 0 即lg 2 a 0 解得a 1 函數(shù)y1 lg 1 x 是增函數(shù) 函數(shù)y2 lg 1 x 是減函數(shù) 故f x y1 y2是增函數(shù) 選D 答案D 7 求函數(shù)最值 值域 常用的方法 1 單調(diào)性法 適合于已知或能判斷單調(diào)性的函數(shù) 2 圖象法 適合于已知或易作出圖象的函數(shù) 3 基本不等式法 特別適合于分式結(jié)構(gòu)或兩元的函數(shù) 4 導(dǎo)數(shù)法 適合于可導(dǎo)函數(shù) 5 換元法 特別注意新元的范圍 6 分離常數(shù)法 適合于一次分式 8 函數(shù)圖象的幾種常見(jiàn)變換 1 平移變換 左右平移 左加右減 注意是針對(duì)x而言 上下平移 上加下減 2 翻折變換 f x f x f x f x 3 對(duì)稱變換 證明函數(shù)圖象的對(duì)稱性 即證圖象上任意點(diǎn)關(guān)于對(duì)稱中心 軸 的對(duì)稱點(diǎn)仍在圖象上 函數(shù)y f x 與y f x 的圖象關(guān)于原點(diǎn)成中心對(duì)稱 函數(shù)y f x 與y f x 的圖象關(guān)于直線x 0 y軸 對(duì)稱 函數(shù)y f x 與函數(shù)y f x 的圖象關(guān)于直線y 0 x軸 對(duì)稱 1 2 10 二次函數(shù)問(wèn)題 1 處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合 二次函數(shù)在閉區(qū)間上必有最值 求最值問(wèn)題用 兩看法 一看開(kāi)口方向 二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系 2 若原題中沒(méi)有指出是 二次 方程 函數(shù)或不等式 要考慮到二次項(xiàng)系數(shù)可能為零的情形 問(wèn)題10若關(guān)于x的方程ax2 x 1 0至少有一個(gè)正根 則a的取值范圍為 11 1 對(duì)數(shù)運(yùn)算性質(zhì)已知a 0且a 1 b 0且b 1 M 0 N 0 則loga MN logaM logaN logaMn nlogaM 2 指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象與性質(zhì)可從定義域 值域 單調(diào)性 函數(shù)值的變化情況考慮 特別注意底數(shù)的取值對(duì)有關(guān)性質(zhì)的影響 另外 指數(shù)函數(shù)y ax的圖象恒過(guò)定點(diǎn) 0 1 對(duì)數(shù)函數(shù)y logax的圖象恒過(guò)定點(diǎn) 1 0 問(wèn)題11函數(shù)y log2 x 1 的遞增區(qū)間是 作圖可知正確答案為 0 1 2 0 1 2 12 冪函數(shù)y x R 1 若 1 則y x 圖象是直線 當(dāng) 0時(shí) y x0 1 x 0 圖象是除點(diǎn) 0 1 外的直線 當(dāng)01時(shí) 在第一象限內(nèi) 圖象是下凸的 2 增減性 當(dāng) 0時(shí) 在區(qū)間 0 上 函數(shù)y x 是增函數(shù) 當(dāng) 0時(shí) 在區(qū)間 0 上 函數(shù)y x 是減函數(shù) 1 13 函數(shù)與方程 1 對(duì)于函數(shù)y f x 使f x 0的實(shí)數(shù)x叫做函數(shù)y f x 的零點(diǎn) 事實(shí)上 函數(shù)y f x 的零點(diǎn)就是方程f x 0的實(shí)數(shù)根 2 如果函數(shù)y f x 在區(qū)間 a b 上的圖象是一條連續(xù)曲線 且有f a f b 0 那么函數(shù)y f x 在區(qū)間 a b 內(nèi)有零點(diǎn) 即存在c a b 使得f c 0 此時(shí)這個(gè)c就是方程f x 0的根 反之不成立 問(wèn)題13已知定義在R上的函數(shù)f x x2 3x 2 g x 3x 4 其中函數(shù)y g x 的圖象是一條連續(xù)曲線 則方程f x 0在下面哪個(gè)區(qū)間內(nèi)必有實(shí)數(shù)根 A 0 1 B 1 2 C 2 3 D 3 4 解析f x x 2 x 1 g x 3x 4 f 1 0 3 1 4 10 又函數(shù)y g x 的圖象是一條連續(xù)曲線 函數(shù)f x 在區(qū)間 1 2 內(nèi)有零點(diǎn) 因此方程f x 0在 1 2 內(nèi)必有實(shí)數(shù)根 B 14 求導(dǎo)數(shù)的方法 3 復(fù)合函數(shù)的導(dǎo)數(shù) yx yu ux 如求f ax b 的導(dǎo)數(shù) 令u ax b 則 f ax b f u a 問(wèn)題14f x e 2x 則f x 2e 2x 15 利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性 設(shè)函數(shù)y f x 在某個(gè)區(qū)間內(nèi)可導(dǎo) 如果f x 0 那么f x 在該區(qū)間內(nèi)為增函數(shù) 如果f x 0 那么f x 在該區(qū)間內(nèi)為減函數(shù) 如果在某個(gè)區(qū)間內(nèi)恒有f x 0 那么f x 在該區(qū)間內(nèi)為常函數(shù) 注意 如果已知f x 為減函數(shù)求字母取值范圍 那么不等式f x 0恒成立 但要驗(yàn)證f x 是否恒等于0 增函數(shù)亦如此 問(wèn)題15函數(shù)f x ax3 2x2 x 1在R上是增函數(shù) 則a的取值范圍是 解析f x ax3 2x2 x 1的導(dǎo)數(shù)f x 3ax2 4x 1 16 導(dǎo)數(shù)為零的點(diǎn)并不一定是極值點(diǎn) 例如 函數(shù)f x x3 有f 0 0 但x 0不是極值點(diǎn) x 1 17 定積分 易錯(cuò)點(diǎn)1忽視函數(shù)定義域 易錯(cuò)警示 例1函數(shù)的單調(diào)遞增區(qū)間為 錯(cuò)因分析忽視對(duì)函數(shù)定義域的要求 漏掉條件x2 5x 6 0 解析由x2 5x 6 0知 x x 3或x 2 令u x2 5x 6 則u x2 5x 6在 2 上是減函數(shù) 的單調(diào)增區(qū)間為 2 答案 2 易錯(cuò)點(diǎn)2分段函數(shù)意義理解不準(zhǔn)確 A 1B 0C 1D 2 錯(cuò)因分析不理解分段函數(shù)的意義 誤認(rèn)為應(yīng)將x 2016 代入log2 1 x 或者認(rèn)為得不到f 2016 的值 解析f 2016 f 2015 f 2014 f 2014 f 2013 f 2014 f 2013 f 2010 f 0 0 答案B 錯(cuò)因分析只考慮分段函數(shù)各段上函數(shù)值變化情況 忽視對(duì)定義域的臨界點(diǎn)處函數(shù)值的要求 易錯(cuò)點(diǎn)3函數(shù)零點(diǎn)求解討論不全面例4函數(shù)f x mx2 2x 1有且僅有一個(gè)正實(shí)數(shù)零點(diǎn) 則實(shí)數(shù)m的取值范圍是 A 1 B 0 1 C 0 1 D 1 錯(cuò)因分析解本題易出現(xiàn)的錯(cuò)誤有分類討論不全面 函數(shù)零點(diǎn)定理使用不當(dāng) 如忽視對(duì)m 0的討論 就會(huì)錯(cuò)選C 當(dāng)m 0時(shí) 若 0 即m 1時(shí) x 1是函數(shù)唯一的零點(diǎn) 若 0 顯然x 0不是函數(shù)的零點(diǎn) 這樣函數(shù)有且僅有一個(gè)正實(shí)數(shù)零點(diǎn)等價(jià)于方程f x mx2 2x 1 0有一個(gè)正根一個(gè)負(fù)根 即mf 0 0 即m 0 故選B 答案B 易錯(cuò)點(diǎn)4混淆 過(guò)點(diǎn) 和 切點(diǎn) 例5求過(guò)曲線y 3x x3上的點(diǎn) 2 2 的切線方程 錯(cuò)因分析混淆過(guò)一點(diǎn)的切線和在一點(diǎn)處切線 錯(cuò)誤認(rèn)為 2 2 一定是切點(diǎn) 解設(shè)切點(diǎn)為P x0 y0 則點(diǎn)P處的切線方程是 點(diǎn)A在切線上 又 點(diǎn)P在曲線C上 由 解得x0 2或x0 1 當(dāng)x0 2時(shí) P點(diǎn)的坐標(biāo)為 2 2 切線方程是9x y 16 0 當(dāng)x0 1時(shí) P點(diǎn)的坐標(biāo)為 1 2 切線方程是y 2 0 綜上 過(guò)點(diǎn)A的曲線C的切線方程是 9x y 16 0或y 2 0 易錯(cuò)點(diǎn)5極值點(diǎn)條件不清例6已知f x x3 ax2 bx a2在x 1處有極值為10 則a b 錯(cuò)因分析把f x0 0作為x0為極值點(diǎn)的充要條件 沒(méi)有對(duì)a b值進(jìn)行驗(yàn)證 導(dǎo)致增解 解析f x 3x2 2ax b 由x 1時(shí) 函數(shù)取得極值10 得 當(dāng)a 4 b 11時(shí) f x 3x2 8x 11 3x 11 x 1 在x 1兩側(cè)的符號(hào)相反 符合題意 當(dāng)a 3 b 3時(shí) f x 3 x 1 2在x 1兩側(cè)的符號(hào)相同 所以a 3 b 3不符合題意 舍去 綜上可知a 4 b 11 a b 7 答案 7 易錯(cuò)點(diǎn)6函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系理解不準(zhǔn)確例7函數(shù)f x ax3 x2 x 5在R上是增函數(shù) 則a的取值范圍是 錯(cuò)因分析誤認(rèn)為f x 0恒成立是f x 在R上是增函數(shù)的必要條件 漏掉f x 0的情況 解析f x ax3 x2 x 5的導(dǎo)數(shù)f x 3ax2 2x 1 易錯(cuò)點(diǎn)7計(jì)算定積分忽視細(xì)節(jié) A 2ln2B 2ln2C ln2D ln2 答案D 查缺補(bǔ)漏 1 2 3 4 5 6 7 8 9 10 11 12 1 2014 北京 下列函數(shù)中 在區(qū)間 0 上為增函數(shù)的是 1 2 3 4 5 6 7 8 9 10 11 12 B項(xiàng) 函數(shù)y x 1 2在 1 上為減函數(shù) 在 1 上為增函數(shù) 故錯(cuò)誤 D項(xiàng) 函數(shù)y log0 5 x 1 在 1 上為減函數(shù) 故錯(cuò)誤 答案A 1 2 3 4 5 6 7 8 9 10 11 12 C 1 2 3 4 5 6 7 8 9 10 11 12 3 下列各式中錯(cuò)誤的是 A 0 83 0 73B log0 50 4 log0 50 6C 0 75 0 1lg1 4 解析構(gòu)造相應(yīng)函數(shù) 再利用函數(shù)的性質(zhì)解決 對(duì)于A 構(gòu)造冪函數(shù)y x3 為增函數(shù) 故A對(duì) 對(duì)于B D 構(gòu)造對(duì)數(shù)函數(shù)y log0 5x為減函數(shù) y lgx為增函數(shù) B D都正確 對(duì)于C 構(gòu)造指數(shù)函數(shù)y 0 75x 為減函數(shù) 故C錯(cuò) C 1 2 3 4 5 6 7 8 9 10 11 12 4 a是的零點(diǎn) 若0 x0 a 則f x0 的值滿足 A f x0 0B f x0 0C f x0 0D f x0 的符號(hào)不確定 解析函數(shù)在 0 上是單調(diào)遞增的 這個(gè)函數(shù)有零點(diǎn) 這個(gè)零點(diǎn)是唯一的 根據(jù)函數(shù)的單調(diào)性 知在 0 a 上 這個(gè)函數(shù)的函數(shù)值小于零 即f x0 0 B 1 2 3 4 5 6 7 8 9 10 11 12 5 2014 天津 函數(shù)的單調(diào)遞增區(qū)間是 A 0 B 0 C 2 D 2 解析因?yàn)樵诙x域上是減函數(shù) 所以求原函數(shù)的單調(diào)遞增區(qū)間 即求函數(shù)t x2 4的單調(diào)遞減區(qū)間 結(jié)合函數(shù)的定義域 可知所求區(qū)間為 2 D 1 2 3 4 5 6 7 8 9 10 11 12 6 已知函數(shù)f x 的導(dǎo)函數(shù)f x 的圖象如圖所示 那么函數(shù)f x 的圖象最有可能的是 1 2 3 4 5 6 7 8 9 10 11 12 解析從導(dǎo)函數(shù)圖象上可以看出函數(shù)f x 的單調(diào)遞增區(qū)間是 2 0 單調(diào)遞減區(qū)間是 2 0 故函數(shù)圖象最有可能是選項(xiàng)A中的圖象 答案A 1 2 3 4 5 6 7 8 9 10 11 12 A f x 是偶函數(shù)B f x 是增函數(shù)C f x 是周期函數(shù)D f x 的值域?yàn)?1 1 2 3 4 5 6 7 8 9 10 11 12 由圖象知只有D正確 答案D 1 2 3 4 5 6 7 8 9 10 11 12 8 若函數(shù)f x 是定義在R上的偶函數(shù) 在 0 上是減函數(shù) 且f 2 0 則使得f x 0的x的取值范圍是 解析因?yàn)閒 x 是偶函數(shù) 所以f x f x f x 因?yàn)閒 x 0 f 2 0 所以f x f 2 又因?yàn)閒 x 在 0 上是減函數(shù) 所以f x 在 0 上是增函數(shù) 所以 x 2 所以 2 x 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 解析方程f x x a 0的實(shí)根也就是函數(shù)y f x 與y a x的圖象交點(diǎn)的橫坐標(biāo) 如圖所示 作出兩個(gè)函數(shù)圖象 顯然當(dāng)a 1時(shí) 兩個(gè)函數(shù)圖象有兩個(gè)交點(diǎn) 1 2 3 4 5 6 7 8 9 10 11 12 當(dāng)a 1時(shí) 兩個(gè)函數(shù)圖象的交點(diǎn)只有一個(gè) 所以實(shí)數(shù)a的取值范圍是 1 答案 1 1 2 3 4 5 6 7 8 9 10 11 12 10 2014 江蘇 已知函數(shù)f x x2 mx 1 若對(duì)于任意x m m 1 都有f x 0成立 則實(shí)數(shù)m的取值范圍是 解析作出二次函數(shù)f x 的圖象 對(duì)于任意x m m 1 都有f x 0 1 2 3 4 5 6 7 8 9 10 11 12 1 判斷函數(shù)f x 的奇偶性 解當(dāng)a 0時(shí) f x x2為偶函數(shù) 當(dāng)a 0時(shí) f x 既不是奇函數(shù)也不是偶函數(shù) 1 2 3 4 5 6 7 8 9 10 11 12 2 若f x 在區(qū)間 2 上是增函數(shù) 求實(shí)數(shù)a的取值范圍 解要使f x 在區(qū)間 2 上是增函數(shù) 只需當(dāng)x 2時(shí) f x 0恒成立 故當(dāng)a 16時(shí) f x 在區(qū)間 2 上是增函數(shù) 1 2 3 4 5 6 7 8 9 10 11 12 因?yàn)閤 0且x 1 所以 x 0 故函數(shù) x 的單調(diào)遞增區(qū)間為 0 1 和 1 1 2 3 4 5 6 7 8 9 10 11 12 2 若f x g x x 1 恒成立 求實(shí)數(shù)a的取值范圍 1 2 3 4 5 6 7 8 9 10 11 12 因?yàn)閤 1 故h x 0 所以h x 在區(qū)間 1 上單調(diào)遞減 由lna h x max h 1 0 解得a 1 故實(shí)數(shù)a的取值范圍為 1- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 第四篇 第2講 函數(shù)與導(dǎo)數(shù)課件 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 策略 第四 函數(shù) 導(dǎo)數(shù) 課件
鏈接地址:http://weibangfood.com.cn/p-5646034.html