4、北卷)已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<4)=0.8,則P(0<ξ<2)等于( )
A.0.6 B.0.4
C.0.3 D.0.2
第六十七課時 正態(tài)分布(課堂探究案)
典型例題
考點1 正態(tài)曲線的性質
【典例1】若一個正態(tài)分布的概率密度函數(shù)是一個偶函數(shù),且該函數(shù)的最大值為.
(1)求該正態(tài)分布的概率密度函數(shù)的解析式;
(2)求正態(tài)總體在(-4,4)的概率.
【變式1】設兩個正態(tài)分布N(μ1,σ)(σ1>0)和N(μ2,σ)(σ2>0)的密度函
數(shù)圖象如圖所示,則有 ( )
A.μ1<μ2,σ1<σ2
B.
5、μ1<μ2,σ1>σ2
C.μ1>μ2,σ1<σ2
D.μ1>μ2,σ1>σ2
考點2 服從正態(tài)分布的概率計算
【典例2】某地區(qū)數(shù)學考試的成績X服從正態(tài)分布,其密度曲線如圖所示.
(1)求總體隨機變量的期望和方差;
(2)求成績X位于區(qū)間(52,68)的概率.
【變式2】(1)在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2) (σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(2,+∞)上取值的概率為________.
(2)若X~N,則X落在(-∞,-1]∪[1,+∞)內(nèi)的概率為________.
考點3 正態(tài)分布的應用
【典例3】已知電燈泡的使用
6、壽命X~N(1 500,1002)(單位:h).
(1)購買一個燈泡,求它的使用壽命不小于1 400小時的概率;
(2)這種燈泡中,使用壽命最長的占0.15%,這部分燈泡的使用壽命至少為多少小時?
【變式3】在某次數(shù)學考試中,考生的成績ξ服從正態(tài)分布,即ξ~N(100,100),已知滿分為150分.
(1)試求考試成績ξ位于區(qū)間(80,120)內(nèi)的概率;
(2)若這次考試共有2 000名考生參加,試估計這次考試及格(不小于90分)的人數(shù).
當堂檢測
1. 已知三個正態(tài)分布密度函數(shù)fi(x)= (x∈R,i=1,2,3)
的圖象如圖所示,則 ( )
A
7、.μ1<μ2=μ3,σ1=σ2>σ3
B.μ1>μ2=μ3,σ1=σ2<σ3
C.μ1=μ2<μ3,σ1<σ2=σ3
D.μ1<μ2=μ3,σ1=σ2<σ3
2. 設隨機變量X~N(0,σ2),且P(-2≤X≤0)=0.4,則P(0≤X≤2)的值是 ( )
A.0.3 B.0.4 C.0.5 D.0.6
3. 已知隨機變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.6826,則P(X>4)等于 ( )
A.0.158 8 B.0.158 5 C.0.158 6 D.0.158 7
4. 已知隨機變量ξ~N(3,22),若ξ
8、=2η+3,則D(η)等于 ( )
A.0 B.1 C.2 D.4
課后拓展案
A組全員必做題
1.某市組織一次高三調(diào)研考試,考試后統(tǒng)計的數(shù)學成績服從正態(tài)分布,其概率密度函數(shù)為f(x)=e- (x∈R),則下列命題不正確的是 ( )
A.該市這次考試的數(shù)學平均成績?yōu)?0分
B.分數(shù)在120分以上的人數(shù)與分數(shù)在60分以下的人數(shù)相同
C.分數(shù)在110分以上的人數(shù)與分數(shù)在50分以下的人數(shù)相同
D.該市這次考試的數(shù)學成績標準差為10
2. 設隨機變量ξ服從正態(tài)分布N(μ,σ2),函數(shù)f(x)=x2+4x+ξ沒有零點的概率是,則μ等于
9、 ( )
A.1 B.2 C.4 D.不能確定
3. 隨機變量ξ服從正態(tài)分布N(1,σ2),已知P(ξ<0)=0.3,則P(ξ<2)=________.
4.某中學2 000名考生的高考數(shù)學成績近似服從正態(tài)分布N(120,100),則此校數(shù)學成績在140分以上的考生人數(shù)約為________.(注:正態(tài)總體N(μ,σ2)在區(qū)間(μ-2σ,μ+2σ)內(nèi)取值的概率約為0.9544).
5.在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.4,則ξ在(0,2)內(nèi)取值的概率為________.
6.商場經(jīng)
10、營的某種包裝大米的質量(單位:kg)服從正態(tài)分布X~N(10,0.12),任選一袋這種大米,質量在9.8~10.2 kg的概率是________.
B組提高選做題
1.汽車耗油量對汽車的銷售有著非常重要的影響,各個汽車制造企業(yè)積極采用新技術降低耗油量,某汽車制造公司為調(diào)查某種型號的汽車的耗油情況,共抽查了1 200名車主,據(jù)統(tǒng)計該種型號的汽車的平均耗油為百公里8.0升,并且汽車的耗油量ξ服從正態(tài)分布N(8,σ2),已知耗油量ξ∈[7,9]的概率為0.7,那么耗油量大于9升的汽車大約有________輛.
2.工廠制造的某機械零件尺寸X服從正態(tài)分布N,問在一次正常的試驗中,取1 000
11、個零件時,不屬于區(qū)間(3,5)這個尺寸范圍的零件大約有多少個?
3.在某市組織的一次數(shù)學競賽中全體參賽學生的成績近似服從正態(tài)分布N(60,100),已知成績在90分以上(含90分)的學生有13人.
求此次參加競賽的學生總數(shù)共有多少人?
參考答案
預習自測
1.0.1 解析 ∵P(0≤ξ≤2)=P(-2≤ξ≤0)=0.4,
∴P(ξ>2)=(1-2×0.4)=0.1.
2. 0.876 4 解析 由正態(tài)曲線的對稱性知
P(X≥1.54)=P(X≤-1.54).
又P(X≥1.54)=1-P(X<1.54)=1-0.938 2=0.061 8
∴P(X≤-1.5
12、4)=0.061 8,
∴P(|X|<1.54)=P(-1.544)=0.2,
由題意知圖象的對稱軸為直線x=2,P(ξ<0)=P(ξ>4)=0.2,
∴P(0<ξ<4)=1-P(ξ<0)-P(ξ>4)=0.6.
∴P(0<ξ<2)=P(0<ξ<4)=0.3.
典型例題
【典
13、例1】解 (1)由于該正態(tài)分布的概率密度函數(shù)是一個偶函數(shù),所以其圖象關于y軸對稱,即μ=0.由=,得σ=4,
故該正態(tài)分布的概率密度函數(shù)的解析式是
f(x)=,x∈R.
(2)P(-4
14、=,解得σ=4.
∴f(x)=,x∈[0,100],
∴總體隨機變量的期望是μ=60,方差是σ2=16.
(2)成績X位于區(qū)間(52,68)的概率為
P(μ-2σ2)=×[1-2P(0<ξ<1)]=×(1-0.8)=0.1.
(2)【答案】0.0026 【解析】∵μ=0,σ=,
∴P(X≤-1或x≥1)
=1-P(-1
15、41 3.
(2)設這部分燈泡的使用壽命至少為x0小時,
則x0>1 500,則P(X≥x0)=0.15%.
P(X-1 500≥x0-1 500)==0.15%,
P(|X-1 500|
16、6,
∴P(ξ>110)=(1-0.6826)=0.158 7,
∴P(ξ≥90)=0.6826+0.158 7=0.841 3.
∴及格人數(shù)為2 000×0.841 3≈1 683(人).
當堂檢測
1.D解析 正態(tài)分布密度函數(shù)f2(x)和f3(x)的圖象都是關于同一條直線對稱,所以其平均數(shù)相同,故μ2=μ3,又f2(x)的對稱軸的橫坐標值比f1(x)的對稱軸的橫坐標值大,故有μ1<μ2=μ3.又σ越大,曲線越“矮胖”,σ越小,曲線越“瘦高”,由圖象可知,正態(tài)分布密度函數(shù)f1(x)和f2(x)的圖象一樣“瘦高”,φ3(x)明顯“矮胖”,從而可知σ1=σ2<σ3.
2. B解析 正
17、態(tài)曲線關于直線x=0對稱,∵P(-2≤X≤0)=0.4,∴P(0≤X≤2)=0.4.
3.D解析 由于X服從正態(tài)分布N(3,1),
故正態(tài)分布曲線的對稱軸為x=3.所以P(X>4)=P(X<2),
故P(X>4)==0.158 7.
4. B解析 由ξ=2η+3,得D(ξ)=4D(η),而D(ξ)=σ2=4,
∴D(η)=1.
A組全員必做題
1.B解析 由密度函數(shù)知,均值(期望)μ=80,標準差σ=10,又曲線關于直線x=80對稱,故分數(shù)在100分以上的人數(shù)與分數(shù)在60分以下的人數(shù)相同,所以B是錯誤的.
2.C解析 根據(jù)題意,函數(shù)f(x)=x2+4x+ξ沒有零點時,Δ=
18、16-4ξ<0,即ξ>4,根據(jù)正態(tài)曲線的對稱性,當函數(shù)f(x)=x2+4x+ξ沒有零點的概率是時,μ=4.
3. 0.7解析 由題意可知,正態(tài)分布的圖象關于直線x=1對稱,所以P(ξ<2)=P(ξ<0)+P(0<ξ<1)+P(1<ξ<2),
又P(0<ξ<1)=P(1<ξ<2)=0.2,所以P(ξ<2)=0.7.
4.46解析 因為標準差是10,故在區(qū)間(120-20,120+20)之外的概率是1-0.9544,數(shù)學成績在140分以上的概率是=0.0228,故數(shù)學成績在140分以上的人數(shù)為2 000×0.022846≈46.
5.0.8解析 ∵ξ服從正態(tài)分布N(1,σ2),
∴ξ在
19、(0,1)與(1,2)內(nèi)取值的概率相同均為0.4.
∴ξ在(0,2)內(nèi)取值的概率為0.4+0.4=0.8.
6.0.9544解析 P(9.89)=0.15,故耗油量大于9升的汽車大約有1 200×0.15=180(輛).
2.解 ∵X~N,∴μ=4,σ=.
∴不屬于區(qū)間(3,5)的概率為
P(X≤3)+P(X≥5)=1-P(3