《高中數(shù)學(xué)必修2教案3_示范教案(2_1_3空間中直線與平面之間的位置關(guān)系)》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)必修2教案3_示范教案(2_1_3空間中直線與平面之間的位置關(guān)系)(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
2.1.3 空間中直線與平面之間的位置關(guān)系
整體設(shè)計(jì)
教學(xué)分析
空間中直線與平面之間的位置關(guān)系是立體幾何中最重要的位置關(guān)系,直線與平面的相交和平行是本節(jié)的重點(diǎn)和難點(diǎn).空間中直線與平面之間的位置關(guān)系是根據(jù)交點(diǎn)個數(shù)來定義的,要求學(xué)生在公理1的基礎(chǔ)上會判斷直線與平面之間的位置關(guān)系.本節(jié)重點(diǎn)是結(jié)合圖形判斷空間中直線與平面之間的位置關(guān)系.
三維目標(biāo)
1.結(jié)合圖形正確理解空間中直線與平面之間的位置關(guān)系.
2.進(jìn)一步熟悉文字語言、圖形語言、符號語言的相互轉(zhuǎn)換.
3.進(jìn)一步培養(yǎng)學(xué)生的空間想象能力.
重點(diǎn)難點(diǎn)
正確判定直線與平面的位置關(guān)系.
課時(shí)安排
1課時(shí)
2、
教學(xué)過程
導(dǎo)入新課
思路1.(情境導(dǎo)入)
一支筆所在的直線與我們的課桌面所在的平面,可能有幾個交點(diǎn)?可能有幾種位置關(guān)系?
思路2.(事例導(dǎo)入)
觀察長方體(圖1),你能發(fā)現(xiàn)長方體ABCD—A′B′C′D′中,線段A′B所在的直線與長方體ABCD—A′B′C′D′的六個面所在平面有幾種位置關(guān)系?
圖1
推進(jìn)新課
新知探究
提出問題
①什么叫做直線在平面內(nèi)?
②什么叫做直線與平面相交?
③什么叫做直線與平面平行?
④直線在平面外包括哪幾種情況?
⑤用三種語言描述直線與平面之間的位置關(guān)系.
活動:教師提示、點(diǎn)
3、撥從直線與平面的交點(diǎn)個數(shù)考慮,對回答正確的學(xué)生及時(shí)表揚(yáng).
討論結(jié)果:①如果直線與平面有無數(shù)個公共點(diǎn)叫做直線在平面內(nèi).
②如果直線與平面有且只有一個公共點(diǎn)叫做直線與平面相交.
③如果直線與平面沒有公共點(diǎn)叫做直線與平面平行.
④直線與平面相交或平行的情況統(tǒng)稱為直線在平面外.
⑤
直線在平面內(nèi)
aα
直線與平面相交
a∩α=A
直線與平面平行
a∥α
應(yīng)用示例
思路1
例1 下列命題中正確的個數(shù)是( )
①若直線l上有無數(shù)個點(diǎn)不在平面α內(nèi),則l∥α
②若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都平行
③如果兩條平行直線中的一條與一個平面平
4、行,那么另一條也與這個平面平行
④若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都沒有公共點(diǎn)
A.0 B.1 C.2 D.3
分析:如圖2,
圖2
我們借助長方體模型,棱AA1所在直線有無數(shù)點(diǎn)在平面ABCD外,但棱AA1所在直線與平面ABCD相交,所以命題①不正確;
A1B1所在直線平行于平面ABCD,A1B1顯然不平行于BD,所以命題②不正確;
A1B1∥AB,A1B1所在直線平行于平面ABCD,但直線AB平面ABCD,所以命題③不正確;
l與平面
5、α平行,則l與α無公共點(diǎn),l與平面α內(nèi)所有直線都沒有公共點(diǎn),所以命題④正確.
答案:B
變式訓(xùn)練
請討論下列問題:
若直線l上有兩個點(diǎn)到平面α的距離相等,討論直線l與平面α的位置關(guān)系.
圖3
解:直線l與平面α的位置關(guān)系有兩種情況(如圖3),直線與平面平行或直線與平面相交.
點(diǎn)評:判斷直線與平面的位置關(guān)系要善于找出空間模型,結(jié)合圖形來考慮,注意考慮問題要全面.
例2 已知一條直線與三條平行直線都相交,求證:這四條直線共面.
已知直線a∥b∥c,直線l∩a=A,l∩b=B,l∩c=C.
求證:l與a、b、c共面.
證明:如圖4,∵a∥b,
圖4
6、
∴a、b確定一個平面,設(shè)為α.
∵l∩a=A,l∩b=B,∴A∈α,B∈α.
又∵A∈l,B∈l,∴ABα,即lα.
同理b、c確定一個平面β,lβ,
∴平面α與β都過兩相交直線b與l.
∵兩條相交直線確定一個平面,
∴α與β重合.故l與a、b、c共面.
變式訓(xùn)練
已知aα,bα,a∩b=A,P∈b,PQ∥a,
求證:PQα.
證明:∵PQ∥a,∴PQ、a確定一個平面,設(shè)為β.
∴P∈β,aβ,Pa.又P∈α,aα,Pa,
由推論1:過P、a有且只有一個平面,
∴α、β重合.∴PQα.
點(diǎn)評:證明兩個平面重合是證明直線在平面內(nèi)問題的重要方法.
思路2
7、例1 若兩條相交直線中的一條在平面α內(nèi),討論另一條直線與平面α的位置關(guān)系.
解:如圖5,另一條直線與平面α的位置關(guān)系是在平面內(nèi)或與平面相交.
圖5
用符號語言表示為:若a∩b=A,bα,則aα或a∩α=A.
變式訓(xùn)練
若兩條異面直線中的一條在平面α內(nèi),討論另一條直線與平面α的位置關(guān)系.
分析:如圖6,另一條直線與平面α的位置關(guān)系是與平面平行或與平面相交.
圖6
用符號語言表示為:若a與b異面,aα,則b∥α或b∩α=A.
點(diǎn)評:判斷直線與平面的位置關(guān)系要善于找出空間模型,結(jié)合圖形來考慮,注意考慮問題要全面.
例2 若直線a不平行于平面α,且aα,則下列結(jié)
8、論成立的是( )
A.α內(nèi)的所有直線與a異面 B.α內(nèi)的直線與a都相交
C.α內(nèi)存在唯一的直線與a平行 D.α內(nèi)不存在與a平行的直線
分析:如圖7,若直線a不平行于平面α,且aα,則a與平面α相交.
圖7
例如直線A′B與平面ABCD相交,直線AB、CD在平面ABCD內(nèi),直線AB與直線A′B相交,直線CD與直線A′B異面,所以A、B都不正確;平面ABCD內(nèi)不存在與a平行的直線,所以應(yīng)選D.
答案:D
變式訓(xùn)練
不在同一條直線上的三點(diǎn)A、B、C到平面α的距離相等,且Aα,給出以下三個命題:
①△ABC中至
9、少有一條邊平行于α;②△ABC中至多有兩邊平行于α;③△ABC中只可能有一條邊與α相交.
其中真命題是_____________.
分析:如圖8,三點(diǎn)A、B、C可能在α的同側(cè),也可能在α兩側(cè),
圖8
其中真命題是①.
答案:①
變式訓(xùn)練
若直線aα,則下列結(jié)論中成立的個數(shù)是( )
(1)α內(nèi)的所有直線與a異面 (2)α內(nèi)的直線與a都相交 (3)α內(nèi)存在唯一的直線與a平行 (4)α內(nèi)不存在與a平行的直線
A.0 B.1 C.2 D.3
分析:∵直線a
10、α,∴a∥α或a∩α=A.
如圖9,顯然(1)(2)(3)(4)都有反例,所以應(yīng)選A.
圖9
答案:A
點(diǎn)評:判斷一個命題是否正確要善于找出空間模型(長方體是常用空間模型),另外考慮問題要全面即注意發(fā)散思維.
知能訓(xùn)練
已知α∩β=l,aα且aβ,bβ且bα,又a∩b=P.
求證:a與β相交,b與α相交.
證明:如圖10,∵a∩b=P,
圖10
∴P∈a,P∈b.
又bβ,∴P∈β.
∴a與β有公共點(diǎn)P,即a與β相交.
同理可證,b與α相交.
拓展提升
過空間一點(diǎn),能否作一個平面與兩條異面直線都平行?
解:(1)如圖11,
C′D′與BD是異面
11、直線,可以過P點(diǎn)作一個平面與兩異面直線C′D′、BD都平行.
如圖12,
圖11 圖12 圖13
顯然,平面PQ是符合要求的平面.
(2)如圖13,當(dāng)點(diǎn)P與直線C′D′確定的平面和直線BD平行時(shí),不存在過P點(diǎn)的平面與兩異面直線C′D′、BD都平行.
點(diǎn)評:判斷一個命題是否正確要善于找出空間模型(長方體是常用空間模型),另外考慮問題要全面即注意發(fā)散思維.
課堂小結(jié)
本節(jié)主要學(xué)習(xí)直線與平面的位置關(guān)系,直線與平面的位置關(guān)系有三種:
①直線在平面內(nèi)——有無數(shù)個公共點(diǎn),
②直線與平面相交——有且只有一個公共點(diǎn),
③直線與平面平行——沒有公共點(diǎn).
另外,空間想象能力的培養(yǎng)是本節(jié)的重點(diǎn)和難點(diǎn).
作業(yè)
課本習(xí)題2.1 A組7、8.
設(shè)計(jì)感想
本節(jié)內(nèi)容較少,教材沒有討論線面平行的判定和性質(zhì),只介紹了直線與平面的位置關(guān)系,因此認(rèn)為本節(jié)空洞無物,那就錯了.直線與平面的位置關(guān)系是立體幾何的重要位置關(guān)系,雖沒有嚴(yán)格推理和證明,卻正好發(fā)揮我們空間想象能力和發(fā)散思維能力;本節(jié)的設(shè)計(jì)充分利用空間模型展現(xiàn)直線與平面的位置關(guān)系,提出了一些具有挑戰(zhàn)性的問題以激發(fā)學(xué)生的空間想象能力和發(fā)散思維能力.