《高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)思想方法與高考數(shù)學(xué)文化 第1講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 數(shù)學(xué)思想方法與高考數(shù)學(xué)文化 第1講 函數(shù)與方程思想、數(shù)形結(jié)合思想課件 文(53頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第1講函數(shù)與方程思想、數(shù)形結(jié)合思想講函數(shù)與方程思想、數(shù)形結(jié)合思想數(shù)學(xué)思想解讀1.函數(shù)與方程思想的實(shí)質(zhì)就是用聯(lián)系和變化的觀點(diǎn),描述兩個(gè)量之間的依賴關(guān)系,刻畫數(shù)量之間的本質(zhì)特征,在提出數(shù)學(xué)問(wèn)題時(shí),拋開(kāi)一些非數(shù)學(xué)特征,抽象出數(shù)量特征,建立明確的函數(shù)關(guān)系,并運(yùn)用函數(shù)的知識(shí)和方法解決問(wèn)題.有時(shí)需要根據(jù)已知量和未知量之間的制約關(guān)系,列出方程(組),進(jìn)而通過(guò)解方程(組)求得未知量.函數(shù)與方程思想是相互聯(lián)系,相互為用的.2.數(shù)形結(jié)合思想,就是根據(jù)數(shù)與形之間的對(duì)應(yīng)關(guān)系,通過(guò)數(shù)與形的相互轉(zhuǎn)化來(lái)解決數(shù)學(xué)問(wèn)題的思想.數(shù)形結(jié)合思想的應(yīng)用包括以下兩個(gè)方面:(1)“以形助數(shù)”,把某些抽象的數(shù)學(xué)問(wèn)題直觀化、生動(dòng)化,能夠變抽
2、象思維為形象思維,揭示數(shù)學(xué)問(wèn)題的本質(zhì);(2)“以數(shù)定形”,把直觀圖形數(shù)量化,使形更加精確. 探究提高1.第(1)題構(gòu)造函數(shù),轉(zhuǎn)化為判定函數(shù)值的大小,利用函數(shù)的單調(diào)性與不等式的性質(zhì)求解.2.函數(shù)方程思想求解方程的根或圖象交點(diǎn)問(wèn)題(1)應(yīng)用方程思想把函數(shù)圖象交點(diǎn)問(wèn)題轉(zhuǎn)化為方程根的問(wèn)題,應(yīng)用函數(shù)思想把方程根的問(wèn)題轉(zhuǎn)化為函數(shù)零點(diǎn)問(wèn)題.(2)含參數(shù)的方程問(wèn)題一般通過(guò)直接構(gòu)造函數(shù)或分離參數(shù)化為函數(shù)解決.答案(1)C(2)8探究提高1.本題完美體現(xiàn)函數(shù)與方程思想的應(yīng)用,第(2)問(wèn)利用裂項(xiàng)相消求Tn,構(gòu)造函數(shù),利用單調(diào)性求Tn的最小值.2.數(shù)列的本質(zhì)是定義域?yàn)檎麛?shù)集或其有限子集的函數(shù),數(shù)列的通項(xiàng)公式與前n項(xiàng)
3、和公式即為相應(yīng)的解析式,因此在解決數(shù)列最值(范圍)問(wèn)題的方法如下:(1)由其表達(dá)式判斷單調(diào)性,求出最值;(2)由表達(dá)式不易判斷單調(diào)性時(shí),借助an1an的正負(fù)判斷其單調(diào)性.探究提高幾何中的最值是高考的熱點(diǎn),在圓錐曲線的綜合問(wèn)題中經(jīng)常出現(xiàn),求解此類問(wèn)題的一般思路為在深刻認(rèn)識(shí)運(yùn)動(dòng)變化的過(guò)程之中,抓住函數(shù)關(guān)系,將目標(biāo)量表示為一個(gè)(或者多個(gè))變量的函數(shù),然后借助于函數(shù)最值問(wèn)題的求法來(lái)求解,這是求面積、線段長(zhǎng)最值(范圍)的基本方法.解析(1)由f(x)|2x2|b有兩個(gè)零點(diǎn),可得|2x2|b有兩個(gè)不等的實(shí)根,從而可得函數(shù)y|2x2|的圖象與函數(shù)yb的圖象有兩個(gè)交點(diǎn),如圖所示.結(jié)合函數(shù)的圖象,可得0b2.(
4、2)作出f(x)的圖象如圖所示.當(dāng)xm時(shí),x22mx4m(xm)24mm2.要使方程f(x)b有三個(gè)不同的根,則有4mm20.又m0,解得m3.答案(1)(0,2)(2)(3,)探究提高1.本題利用數(shù)形結(jié)合思想,將函數(shù)零點(diǎn)或方程的根的情況轉(zhuǎn)化為兩函數(shù)圖象交點(diǎn)問(wèn)題.2.探究方程解的問(wèn)題應(yīng)注意兩點(diǎn):(1)討論方程的解(或函數(shù)的零點(diǎn))一般可構(gòu)造兩個(gè)函數(shù),使問(wèn)題轉(zhuǎn)化為討論兩曲線的交點(diǎn)問(wèn)題,討論方程的解一定要注意圖象的準(zhǔn)確性、全面性,否則會(huì)得到錯(cuò)解.(2)正確作出兩個(gè)函數(shù)的圖象是解決此類問(wèn)題的關(guān)鍵,數(shù)形結(jié)合應(yīng)以快和準(zhǔn)為原則,不要刻意去用數(shù)形結(jié)合. 應(yīng)用2利用數(shù)形結(jié)合思想求最值、范圍【例5】(1)記實(shí)數(shù)x
5、1,x2,xn中最小數(shù)為minx1,x2,xn,則定義在區(qū)間0,)上的函數(shù)f(x)minx21,x3,13x的最大值為()A.5 B.6 C.8 D.10(2)已知圓C:(x3)2(y4)21和兩點(diǎn)A(m,0),B(m,0)(m0).若圓C上存在點(diǎn)P,使得APB90,則m的最大值為()A.7 B.6 C.5 D.4 解析(1)在同一坐標(biāo)系中作出三個(gè)函數(shù)yx21,yx3,y13x的圖象如圖:由圖可知,在實(shí)數(shù)集R上,minx21,x3,13x為yx3上A點(diǎn)下方的射線,拋物線AB之間的部分,線段BC,與直線y13x點(diǎn)C下方的部分的組合圖.顯然,在區(qū)間0,)上,在C點(diǎn)時(shí),yminx21,x3,13x取
6、得最大值. 答案(1)C(2)B探究提高1.第(1)題利用函數(shù)的圖象求最值,避免分段函數(shù)的討論;第(2)題利用幾何直觀,把m的值轉(zhuǎn)化為圓上的點(diǎn)到原點(diǎn)的距離.2.運(yùn)用數(shù)形結(jié)合思想求解最值問(wèn)題(1)對(duì)于幾何圖形中的動(dòng)態(tài)問(wèn)題,應(yīng)分析各個(gè)變量的變化過(guò)程,找出其中的相互關(guān)系求解.(2)應(yīng)用幾何意義法解決問(wèn)題需要熟悉常見(jiàn)的幾何結(jié)構(gòu)的代數(shù)形式,主要有:比值可考慮直線的斜率;二元一次式可考慮直線的截距;根式分式可考慮點(diǎn)到直線的距離;根式可考慮兩點(diǎn)間的距離.答案D答案(1)A(2)C探究提高1.第(1)題利用了數(shù)形結(jié)合思想,由條件判斷函數(shù)的單調(diào)性,再結(jié)合f(1)0可作出函數(shù)的圖象,利用圖象即可求出x的取值范圍.
7、2.求參數(shù)范圍或解不等式問(wèn)題經(jīng)常聯(lián)系函數(shù)的圖象,根據(jù)不等式中量的特點(diǎn),選擇適當(dāng)?shù)膬蓚€(gè)(或多個(gè))函數(shù),利用兩個(gè)函數(shù)圖象的上、下位置關(guān)系轉(zhuǎn)化為數(shù)量關(guān)系解決問(wèn)題,往往可以避免煩瑣的運(yùn)算,獲得簡(jiǎn)捷的解答.解析(1)由題意,易知a1.在同一坐標(biāo)系內(nèi)作出y(x1)2,x(1,2)及ylogax的圖象.若ylogax過(guò)點(diǎn)(2,1),得loga21,所以a2.根據(jù)題意,函數(shù)ylogax,x(1,2)的圖象恒在y(x1)2,x(1,2)的上方.結(jié)合圖象,a的取值范圍是(1,2.答案(1)(1,2(2)(1,11.當(dāng)問(wèn)題中涉及一些變化的量時(shí),就需要建立這些變化的量之間的關(guān)系,通過(guò)變量之間的關(guān)系探究問(wèn)題的答案,這就
8、需要使用函數(shù)思想.2.借助有關(guān)函數(shù)的性質(zhì),一是用來(lái)解決有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問(wèn)題,二是在問(wèn)題的研究中,可以通過(guò)建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù)來(lái)求解. 3.許多數(shù)學(xué)問(wèn)題中,一般都含有常量、變量或參數(shù),這些參變量中必有一個(gè)處于突出的主導(dǎo)地位,把這個(gè)參變量稱為主元,構(gòu)造出關(guān)于主元的方程,主元思想有利于回避多元的困擾,解方程的實(shí)質(zhì)就是分離參變量.4.在數(shù)學(xué)中函數(shù)的圖象、方程的曲線、不等式所表示的平面區(qū)域、向量的幾何意義、復(fù)數(shù)的幾何意義等都實(shí)現(xiàn)以形助數(shù)的途徑,當(dāng)試題中涉及這些問(wèn)題的數(shù)量關(guān)系時(shí),我們可以通過(guò)圖形分析這些數(shù)量關(guān)系,達(dá)到解題的目的.5.有些圖形問(wèn)題,單純從圖形上無(wú)法看出問(wèn)題的結(jié)論,這就要對(duì)圖形進(jìn)行數(shù)量上的分析,通過(guò)數(shù)的幫助達(dá)到解題的目的.