浙江省2019年中考數(shù)學(xué) 第四單元 三角形 課時(shí)訓(xùn)練22 銳角三角函數(shù)及其應(yīng)用練習(xí) (新版)浙教版

上傳人:Sc****h 文檔編號(hào):87586431 上傳時(shí)間:2022-05-09 格式:DOC 頁(yè)數(shù):12 大?。?10.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
浙江省2019年中考數(shù)學(xué) 第四單元 三角形 課時(shí)訓(xùn)練22 銳角三角函數(shù)及其應(yīng)用練習(xí) (新版)浙教版_第1頁(yè)
第1頁(yè) / 共12頁(yè)
浙江省2019年中考數(shù)學(xué) 第四單元 三角形 課時(shí)訓(xùn)練22 銳角三角函數(shù)及其應(yīng)用練習(xí) (新版)浙教版_第2頁(yè)
第2頁(yè) / 共12頁(yè)
浙江省2019年中考數(shù)學(xué) 第四單元 三角形 課時(shí)訓(xùn)練22 銳角三角函數(shù)及其應(yīng)用練習(xí) (新版)浙教版_第3頁(yè)
第3頁(yè) / 共12頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《浙江省2019年中考數(shù)學(xué) 第四單元 三角形 課時(shí)訓(xùn)練22 銳角三角函數(shù)及其應(yīng)用練習(xí) (新版)浙教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省2019年中考數(shù)學(xué) 第四單元 三角形 課時(shí)訓(xùn)練22 銳角三角函數(shù)及其應(yīng)用練習(xí) (新版)浙教版(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 課時(shí)訓(xùn)練(二十二) 銳角三角函數(shù)及其應(yīng)用  |夯實(shí)基礎(chǔ)| 1.[2018·云南] 在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為 (  ) 圖K22-1 A.3 B. C. D. 2.[2017·宜昌] △ABC在網(wǎng)格中的位置如圖K22-1所示(每個(gè)小正方形邊長(zhǎng)為1),AD⊥BC于D,下列選項(xiàng)中,錯(cuò)誤的是 (  ) A.sin α=cos α B.tan C=2 C.sin β=cos β D.tan α=1 3.在△ABC中,∠A,∠B都是銳角,tan A=1,sin B=,你認(rèn)為對(duì)△ABC

2、最確切的判斷是 (  ) A.等腰三角形 B.等腰直角三角形 C.直角三角形 D.銳角三角形 4.[2018·日照] 如圖K22-2,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的☉O的圓心O在格點(diǎn)上,則∠BED的正切值等于 (  ) 圖K22-2 A. B. C.2 D. 5.[2018·重慶B卷] 如圖K22-3,AB是一垂直于水平面的建筑物.某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過一段坡度(或坡比)為i=1∶0.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在

3、E處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45) (  ) 圖K22-3 A.21.7米 B.22.4米 C.27.4米 D.28.8米 6.把sin 60°,cos 60°,tan 60°按從小到大的順序排列,用“<”連結(jié)起來(lái):        .? 7.[2018·黃石] 如圖K22-4,無(wú)人機(jī)在空中C處測(cè)得地面A,B兩點(diǎn)的俯角分別為60°,45°,如果無(wú)人機(jī)距地面高度CD為100米,點(diǎn)A,D,B在同一水平直線上,則A,B兩點(diǎn)間的距離是    米.(結(jié)果保留根號(hào))?

4、 圖K22-4 8.[2018·濰坊] 如圖K22-5,一艘漁船正以60海里/時(shí)的速度向正東方向航行,在A處測(cè)得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處,此時(shí)測(cè)得島礁P在北偏東30°方向,同時(shí)測(cè)得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺(tái)風(fēng)到來(lái)之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/時(shí)的速度繼續(xù)航行    小時(shí)即可到達(dá).(結(jié)果保留根號(hào))? 圖K22-5 9.[2017·舟山] 如圖K22-6,把n個(gè)邊長(zhǎng)為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,tan∠BA4C=    ,…,按此規(guī)律,tan∠BAnC=   

5、 (用含n的代數(shù)式表示).? 圖K22-6 10.[2017·麗水] 圖K22-7是某小區(qū)的一個(gè)健身器材平面圖,已知BC=0.15 m,AB=2.7 m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1 m,參考數(shù)據(jù):sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75) 圖K22-7 11.[2018·臺(tái)州] 如圖K22-8是一輛吊車的工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為3.4 m.當(dāng)起重臂AC長(zhǎng)度為9 m,張角∠HAC為118°時(shí),求操作平臺(tái)C離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位;參考數(shù)據(jù):s

6、in 28°≈0.47,cos 28°≈0.88,tan 28°≈0.53). 圖K22-8 12.[2018·內(nèi)江] 如圖K22-9是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從D,E兩處測(cè)得路燈B的仰角分別為α和β,且tan α=6,tan β=.求燈桿AB的長(zhǎng)度. 圖K22-9 |拓展提升| 13.如圖K22-10,已知AD∥BC,AB⊥AD,點(diǎn)E,F分別在射線AD,BC上,若點(diǎn)E與點(diǎn)B關(guān)于

7、AC對(duì)稱,點(diǎn)E與點(diǎn)F關(guān)于BD對(duì)稱,AC與BD相交于點(diǎn)G,則 (  ) A.1+tan∠ADB= B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB= 圖K22-10 14.如圖K22-11,在每一個(gè)四邊形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12. (1)如圖①,點(diǎn)M是四邊形ABCD的邊AD上一點(diǎn),求△BMC的面積. (2)如圖②,點(diǎn)N是四邊形ABCD邊AD上的任意一點(diǎn),請(qǐng)你求出△BNC周長(zhǎng)的最小值. (3)如圖③,在四邊形ABCD的邊AD上,是

8、否存在一點(diǎn)P,使得cos∠BPC的值最小?若存在,求出此時(shí)cos∠BPC的值;若不存在,請(qǐng)說(shuō)明理由. 圖K22-11 參考答案 1.A [解析] 根據(jù)正切的定義得tan A==3. 2.C [解析] 先構(gòu)建直角三角形,再根據(jù)三角函數(shù)的定義計(jì)算,sin α=cos α==,tan C==2,sin β=cos(90°-β),tan α=1,故選C. 3.B 4.D [解析] 在Rt△ABC中,AB=2,BC=1,∴tan∠BAC==. ∵∠BED=∠BAD,∴tan∠BED=.故選D. 5.A [解析] 過點(diǎn)C作CN⊥DE于點(diǎn)N,延長(zhǎng)AB交ED于點(diǎn)M,則B

9、M⊥DE于點(diǎn)M,則MN=BC=20米.∵斜坡CD的坡比i=1∶0.75,∴令CN=x米,則DN=0.75x米.在Rt△CDN中,由勾股定理,得x2+(0.75x)2=102,解得x=8,從而CN=8米,DN=6米.∵DE=40米,∴ME=MN+ND+DE=66(米),AM=(AB+8)米.在Rt△AME中,tanE=,即=tan24°,從而0.45=,解得AB=21.7(米),故選A. 6.cos 60°

10、=100(1+)米. 8. [解析] 過點(diǎn)P作PQ⊥AB,垂足為Q,過點(diǎn)M作MN⊥AB,垂足為N. AB=60×1.5=90(海里). 設(shè)PQ=MN=x,由點(diǎn)P在點(diǎn)A的東北方向可知,∠PAQ=45°, ∴AQ=PQ=x,BQ=x-90. 在Rt△PBQ中,∠PBQ=90°-30°=60°,tan 60°==,解得x=135+45. 在Rt△BMN中,∠MBN=90°-60°=30°, ∴BM=2MN=2x=2×(135+45)=270+90. ∴航行時(shí)間為=(小時(shí)). 9.  [解析] 根據(jù)所給的三角函數(shù)值進(jìn)行分析可以得到如下規(guī)律:tan∠BA1C==,tan∠BA2C=

11、=,tan∠BA3C==,tan∠BA4C==,….按此規(guī)律tan∠BAnC==. 10.[解析] 過點(diǎn)A作AE⊥CD于點(diǎn)E,過點(diǎn)B作BF⊥AE于點(diǎn)F,構(gòu)造Rt△ABF,運(yùn)用解直角三角形的知識(shí)求出AF,進(jìn)而求出AE,得出結(jié)果. 解:過點(diǎn)A作AE⊥CD于點(diǎn)E,過點(diǎn)B作BF⊥AE于點(diǎn)F, ∵OD⊥CD,∴AE∥OD,∴∠A=∠BOD=70°. 在Rt△ABF中,AB=2.7, ∴AF=2.7×cos70°≈2.7×0.34=0.918, ∴AE=AF+BC=0.918+0.15=1.068≈1.1. 答:端點(diǎn)A到地面CD的距離約是1.1 m. 11.解:如圖所示,過點(diǎn)C作CF⊥

12、BD,垂足為F,過點(diǎn)A作AE⊥CF,垂足為E, ∵AE⊥CF,∴∠AEC=90°, 在Rt△AEC中,sin∠CAE=,可得CE=AC·sin∠CAE≈9×0.47=4.23. ∵∠AHF=∠EFH=∠AEF=90°,∴四邊形AHFE是矩形, ∴EF=AH=3.4,∴CF=CE+EF=3.4+4.23=7.63≈7.6(米). 答:操作平臺(tái)C離地面的高度為7.6米. 12.解:如圖,過點(diǎn)B作BH⊥DE,垂足為點(diǎn)H,過點(diǎn)A作AG⊥BH,垂足為點(diǎn)G. ∵BH⊥DE, ∴∠BHD=∠BHE=90°. 在Rt△BHD中, tan α==6, 在Rt△BHE中,tan β=

13、=, ∴BH=6DH,BH=EH, ∴8DH=EH. ∵DE=18,DE=DH+EH, ∴9DH=18,∴DH=2,BH=12. ∵∠BHD=∠AGH=∠ACH=90°, ∴四邊形ACHG為矩形, ∴AC=GH=11,∠CAG=90°,BG=BH-GH=12-11=1, ∵∠BAC=120°, ∴∠BAG=∠BAC-∠CAG=120°-90°=30°. ∴在Rt△AGB中,AB=2BG=2. 答:燈桿AB的長(zhǎng)度為2米. 13.A [解析] 如圖,連結(jié)CE,設(shè)EF與BD相交于點(diǎn)O. 由對(duì)稱性,得AB=AE.設(shè)AB=1,則BE==. ∵點(diǎn)E與點(diǎn)F關(guān)于BD對(duì)稱, ∴

14、BE=BF,∠EBD=∠FBD, 又∵∠EDB=∠DBF,∴∠EBD=∠EDB, ∴DE=BE=, ∴AD=1+.∵AD∥BC,AB⊥AD,AB=AE, ∴四邊形ABCE是正方形, ∴BC=AB=1,1+tan∠ADB=1+=1+-1=,故A正確. ∵CF=BF-BC=-1,2BC=2×1=2,5CF=5(-1), ∴2BC≠5CF,故B錯(cuò)誤. ∠AEB+22°=45°+22°=67°, 在Rt△ABD中,BD===, sin∠DEF===. 用計(jì)算器計(jì)算可得 ∠DEF=67.5°,故C錯(cuò)誤. 由勾股定理得OE2=()2-2=, ∴OE=. ∵∠EBG+∠AGB=9

15、0°, ∠EBG+∠BEF=90°, ∴∠AGB=∠BEF. 又∵∠BEF=∠DEF, ∴4cos∠AGB=4×=4×=2,故D錯(cuò)誤. 14.解:(1)過點(diǎn)A作AE⊥BC,垂足為E. 在Rt△ABE中,∠ABC=60°,BE=12-8=4, ∴AE=4, ∴S△BMC=BC·AE=×12×4=24. (2)作點(diǎn)C關(guān)于AD對(duì)稱的點(diǎn)C',連結(jié)BC'交AD于點(diǎn)N,點(diǎn)N為滿足條件的點(diǎn). 易知CN=C'N.在Rt△CBC'中,BC=12,CC'=8, ∴BC'==4, ∴△BCN周長(zhǎng)的最小值為12+4. (3)存在點(diǎn)P,使得cos∠BPC的值最小. 如圖,作BC的垂直平分線PQ交BC于點(diǎn)Q,交AD于點(diǎn)P,連結(jié)BP,CP,作△BPC的外接圓☉O,☉O與直線PQ交于點(diǎn)N,又PB=PC,∴圓心O在PN上. ∵AD∥BC, ∴AD為☉O的切線,切點(diǎn)為P. ∵PQ=DC=4>6, ∴圓心O在弦BC的上方. 在AD上任取一點(diǎn)P',連結(jié)P'C,P'B,P'B交☉O于點(diǎn)M,連結(jié)MC, ∴∠BPC=∠BMC≥∠BP'C, ∴∠BPC最大,此時(shí)cos∠BPC的值最小. 連結(jié)BO,在Rt△BOQ中,易知BO=4-OQ,BQ=6, ∴OQ=,∴OB=, ∴cos∠BPC=cos∠BOQ=. 故cos∠BPC的最小值是. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!