《(湖南專版)2020年中考數(shù)學復習 第三單元 函數(shù)及其圖象 課時訓練10 圖形與坐標》由會員分享,可在線閱讀,更多相關《(湖南專版)2020年中考數(shù)學復習 第三單元 函數(shù)及其圖象 課時訓練10 圖形與坐標(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時訓練(十) 圖形與坐標
(限時:40分鐘)
|夯實基礎|
1.在平面直角坐標系中,點P(-2,-3)所在的象限是 ( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.[2019·巴中]在平面直角坐標系中,已知點A(-4,3)與點B關于原點對稱,則點B的坐標為( )
A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3)
3.[2019·甘肅]已知點P(m+2,2m-4)在x軸上,則點P的坐標是 ( )
A.(4,0) B.(0,4) C.(-4,0) D.(0,-4
2、)
4.[2018·撫順]已知點A的坐標為(1,3),點B的坐標為(2,1),將線段AB沿某一方向平移后,點A的對應點的坐標為(-2,1),則點B的對應點的坐標為 ( )
A.(5,3) B.(-1,-2) C.(-1,-1) D.(0,-1)
5.[2019·天津]如圖K10-1,四邊形ABCD為菱形,A,B兩點的坐標分別是(2,0),(0,1),點C,D在坐標軸上,則菱形ABCD的周長等于 ( )
圖K10-1
A.5 B.43 C.45 D.20
6.[2018·金華、麗水]小明為畫一個零件的軸截面,以該軸截面底邊所在的直線為x軸,
3、對稱軸為y軸,建立如圖K10-2②所示的平面直角坐標系.若坐標軸的單位長度取1 mm,則圖中轉折點P的坐標表示正確的是 ( )
圖K10-2
A.(5,30) B.(8,10) C.(9,10) D.(10,10)
7.[2018·海南]如圖K10-3,在平面直角坐標系中,△ABC位于第一象限,點A的坐標是(4,3),把△ABC向左平移6個單位長度,得到△A1B1C1,則點B1的坐標是 ( )
圖K10-3
A.(-2,3) B.(3,-1)
C.(-3,1) D.(-5,2)
8.[2019·嘉興]如圖K10-4,
4、在直角坐標系中,已知菱形OABC的頂點A(1,2),B(3,3).作菱形OABC關于y軸的對稱圖形OA'B'C',再作圖形OA'B'C'關于點O的中心對稱圖形OA″B″C″,則點C的對應點C″的坐標是 ( )
圖K10-4
A.(2,-1) B.(1,-2)
C.(-2,1) D.(-2,-1)
9.如圖K10-5,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為 ( )
圖K10-5
A.O1 B.O2
C.O3 D.O4
10
5、.[2019·廣安]點M(x-1,-3)在第四象限,則x的取值范圍是 .?
11.[2019·常州]平面直角坐標系中,點P(-3,4)到原點的距離是 .?
12.[2019·濟寧]已知點P(x,y)位于第四象限,并且x≤y+4(x,y為整數(shù)),寫出一個符合上述條件的點P的坐標 .?
13.[2019·瀘州]在平面直角坐標系中,點M(a,b)與點N(3,-1)關于x軸對稱,則a+b的值是 .?
14.如圖K10-6是利用網(wǎng)格畫出的太原市地鐵1,2,3號線路部分規(guī)劃示意圖.若建立適當?shù)钠矫嬷苯亲鴺讼?使表示雙塔西街的點的坐標為(0,-1),表示桃園路的點的坐標為(-
6、1,0),則表示太原火車站的點(正好在網(wǎng)格點上)的坐標是 .?
圖K10-6
15.如圖K10-7,在平面直角坐標系中,已知點A(2,3),點B(-2,1),在x軸上存在點P到A,B兩點的距離之和最小,則P點的坐標是 .?
圖K10-7
16.[2019·臨沂]在平面直角坐標系中,點P(4,2)關于直線x=1的對稱點的坐標是 .?
17.已知點A(a,-5),B(8,b).根據(jù)下列要求,確定a,b的值.
(1)A,B兩點關于y軸對稱;
(2)A,B兩點關于原點對稱;
(3)AB∥x軸;
(4)A,B兩點在一、三象限兩坐標軸夾角的平分線上.
7、
|拓展提升|
18.[2019·臺州路橋區(qū)一模]在平面內由極點、極軸和極徑組成的坐標系叫作極坐標系,如圖K10-8①,在平面上取定一點O稱為極點,從點O出發(fā)引一條射線Ox稱為極軸;線段OM的長度稱為極徑,點M的極坐標就可以用線段OM的長度以及從Ox轉動到OM的角度(規(guī)定逆時針方向轉動角度為正)來確定,即M(4,30°)或M(4,-330°)或M(4,390°)等,則下列說法錯誤的是( )
圖K10-8
A.點M關于x軸的對稱點M1的極坐標可以表示為M1(4,-30°)
B.點M關于原點O的中心對稱的點M2的極坐標可以表示為M2(4,570°)
C.以
8、極軸Ox所在直線為x軸建立如圖K10-8②所示的平面直角坐標系,則極坐標M(4,30°)轉化為平面直角坐標系的坐標為M(2,23)
D.把平面直角坐標系中的點N(-4,4)轉化為極坐標,可表示為N(42,135°)
19.在平面直角坐標系中,孔明做走棋的游戲,其走法是:棋子從原點出發(fā),第1步向右走1個單位,第2步向右走2個單位,第3步向上走1個單位,第4步向右走1個單位,…,依此類推,第n步的走法是:當n能被3整除時,向上走1個單位;當n被3除,余數(shù)為1時,向右走1個單位;當n被3除,余數(shù)為2時,向右走2個單位.當走完第100步時,棋子所處位置的坐標是 ( )
A.(66,34)
9、 B.(67,33)
C.(100,33) D.(99,34)
20.[2019·北京豐臺一模]如圖K10-9是4×4的正方形網(wǎng)格,每個小正方形的邊長均為1且頂點稱為格點,點A,B均在格點上.在網(wǎng)格中建立平面直角坐標系,且A(-1,1),B(1,2).如果點C也在此4×4的正方形網(wǎng)格的格點上,且△ABC是等腰三角形,那么當△ABC的面積最大時,點C的坐標為 .?
圖K10-9
【參考答案】
1.C
2.C
3.A [解析]∵點P(m+2,2m-4)在x軸上,∴2m-4=0,解得m=2,∴m+2=4,
∴點P的坐標是(4,0).故選A.
10、
4.C 5.C 6.C 7.C 8.A
9.A [解析]由A點坐標為(-4,2)可知,原點在點A的右側,且位于點A的下方2個單位處.由點B的坐標為(2,-4)可知,原點位于點B的左側,且位于點B的上方4個單位處.故選A.
10.x>1 11.5
12.答案不唯一,如(1,-1)
13.4 14.(3,0)
15.(-1,0) [解析]作A關于x軸的對稱點C,連接BC交x軸于P,則此時AP+BP最小,
∵A點的坐標為(2,3),∴C(2,-3),
設直線BC的表達式是y=kx+b,
把B,C的坐標代入得-2k+b=1,2k+b=-3,解得k=-1,b=-1,
即直線BC的
11、表達式是y=-x-1,當y=0時,-x-1=0,
解得x=-1,
∴P點的坐標是(-1,0).
16.(-2,2) [解析]∵點P(4,2),∴點P到直線x=1的距離為4-1=3,∴點P關于直線x=1的對稱點P'到直線x=1的距離為3,∴點P'的橫坐標為1-3=-2,∴點P'的坐標為(-2,2).故答案為:(-2,2).
17.解:(1)當點A(a,-5),B(8,b)關于y軸對稱時,有xA=-xB,yA=yB,∴a=-8,b=-5.
(2)當點A(a,-5),B(8,b)關于原點對稱時,有xA=-xB,yA=-yB,∴a=-8,b=5.
(3)當AB∥x軸時,有xA≠xB,yA=yB,∴a≠8,b=-5.
(4)當A,B兩點位于一、三象限兩坐標軸夾角平分線上時,有xA=yA且xB=yB,即a=-5,b=8.
18.C
19.C
20.(0,-1)或(2,0) [解析]建立平面直角坐標系如圖所示,以AB為腰作等腰直角三角形,此時△ABC的面積最大,
∴當△ABC的面積最大時,點C的坐標為(0,-1)或(2,0).
7