購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。有不明白之處,可咨詢QQ:1304139763
畢業(yè)設計(論文)
任務書
題 目: 裁斷機設計
立式
院系名稱
學生姓名
指導教師
起止日期
任務書填寫要求
1.畢業(yè)設計(論文)任務書由指導教師根據(jù)各課題的具體情況填寫,經學生所在系(教研室)負責人審查、學院(部)領導簽字后生效。此任務書應在畢業(yè)設計(論文)開始前一周內填好并發(fā)給學生。
2.任務書內容必須用黑墨水筆工整書寫或按教務處統(tǒng)一設計的電子文檔標準格式(可從教務處網頁上下載)打印,不得隨便涂改或潦草書寫,禁止打印在其它紙上后剪貼。
3.任務書內填寫的內容,必須和學生畢業(yè)設計(論文)完成的情況相一致,若有變更,應當經過所在專業(yè)及學院(部)主管領導審批后方可重新填寫。
4.任務書內有關“學院(部)”、“專業(yè)”等名稱的填寫,應寫中文全稱,不能寫數(shù)字代碼。學生的“學號”要寫全號(2003級本科為11位數(shù)、2004級??茷?0位)。
5.任務書內“主要參考文獻”的填寫,應按照國標GB 7714—87《文后參考文獻著錄規(guī)則》的要求書寫,不能有隨意性。
6.有關日期的填寫,應當按照國標GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數(shù)字書寫。如“2007年3月15日”或“2007-03-15”。
畢業(yè)設計(論文)任務書
1.本畢業(yè)設計(論文)課題應達到的目的:
(1)培養(yǎng)學生綜合運用所學知識,發(fā)現(xiàn)、提出、分析和解決實際問題,鍛煉學生實踐能力,結合實際獨立完成課題的工作能力。
(2)對學生的知識面,掌握知識的深度,運用理論結合實際去處理問題的能力,實驗能力,外語水平,計算機運用水平,書面及口頭表達能力進行考核。
2.本畢業(yè)設計(論文)課題任務的內容和要求(包括原始數(shù)據(jù)、技術要求、工作要求等):
裁斷機是用來切割壓制好的桶型砂帶,切割砂帶的目的是為了滿足用戶對砂帶寬度的要求。設備應操作方便、省力、容易掌握和不易發(fā)生故障和操作錯誤。這樣不僅可以減少工人的疲勞、保證工人和機床的安全,還能提高生產效率。在滿足以上條件的情況下,設備的結構應盡量簡單,工藝性要好,容易制造和裝配,維修方便等。所以,在設計時主體結構一般采用焊接的形式。
設計思路是運用刀具的旋轉切割砂帶,而刀具的旋轉是被動跟著主軸的旋轉。它們之間的相對運動是通過刀具對主軸落刀的壓力來實現(xiàn)的。砂筒在切割前撐緊,只有這樣砂帶才能被切割下來。其中砂筒的張緊和刀具的落下由汽缸活塞的運動來實現(xiàn),主軸的轉動由電機帶動。
要求選擇合理的設計方案、計算主要參數(shù);電氣與氣動系統(tǒng)設計;整機機械結構設計。
原始參數(shù)
分條寬度: 10~250mm
分條長度: 380~1000mm
落刀壓力: 200Kgf(可調)
砂帶漲緊力:120Kgf(可調)
配套功率 : 1.5KW(帶制動控制)
氣源壓力: 1.2MPa
畢業(yè)設計(論文)任務書
3.對本畢業(yè)設計(論文)課題成果的要求〔包括畢業(yè)設計論文、圖表、實物樣品等〕:
(1)開題報告,不少于10000字。
(2)方案論證報告。
(3)畢業(yè)設計說明書,不少于5000字(不包括計算公式和圖表)。
(4)總裝配圖一張A0,若干零件圖折合A0圖紙兩張;裝配圖計算機繪圖。
(5)英文翻譯、光盤一張。
4.主要參考文獻:
趙松年 機電一體化機械設計 機械工業(yè)出版社 1996
魏俊民 機電一體化系統(tǒng)設計 中國防止出版社 1998
梁景凱 機電一體化技術與系統(tǒng) 機械工業(yè)出版社 1999
張建民 機電一體化系統(tǒng)設計 高等教育出版社 2001
李華 機械制造技術 高等教育出版社
左健民 液壓與氣動傳動 機械工業(yè)出版社
顧維邦 金屬切削機床概論 機械工業(yè)出版社 1992
陸劍中 金屬切削原理與刀具 機械工業(yè)出版社 1984
Bradley D A. Mechatronics:Electronics in products and processesLondon : Chpman and Hall, 1991
Dinsdale Hunt V . Mechatronics-Japan’s Newest Threat. New York: Chapman and Hall,1991
畢業(yè)設計(論文)任務書
5.本畢業(yè)設計(論文)課題工作進度計劃:
起 迄 日 期
工 作 內 容
2007年
開題報告
月 日~ 月 日
第一周至第二周完成方案論證;第三周至第七周完成設計、計算和繪圖任務
月 日~ 月 日
第八周和第九周完成外文文獻譯文和畢業(yè)論文
月 日~ 月 日
論文答辯
所在系(教研室)審查意見:
負責人:
年 月 日
院(部)學術委員會意見:
負責人:
年 月 日
畢業(yè)設計(論文)外文資料翻譯
設計題目: 裁斷機設計(立式)
外文題目: 機械設計(方案設計過程的分析)
院系名稱: 機電工程學院 專業(yè)班級:
學生姓名:
指導教師:
起止日期:
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導教師評語:
簽名: 年 月 日
附件1:外文資料翻譯譯文
機械設計
機械設計是指機械裝置和機械系統(tǒng)——機器、產品、結構、設備及儀器的設計。大部分機械設計需要利用數(shù)學、材料科學和工程力學知識。
我們對整個設計過程感興趣。它是怎樣開始的?工程師是不是僅僅坐在鋪著白紙的桌旁就可以開始設計了呢?當他記下一些設想后,下一步應該做些什么?什么因素會影響或者控制著應該作出的決定?最后,這一設計過程是如何結束的呢?
有時,雖然并不總是如此,工程師認識到一種需要并且決定對此做一些工作時,設計就開始了。認識到這種需要,并且語言將其清楚地敘述出來,常常是一種高度創(chuàng)造性的工作。因為這種需要可能只是一個模糊的不滿,一種不舒服的感覺,或者是感覺到了某些東西是不正確的。
這種需要往往不是很明顯的。例如,對食品包裝機械進行改進的需要,可能是由于噪音過大、包裝和重量的變化、包裝質量的微小的但是能夠察覺得出來的變化等表現(xiàn)出來的。
敘述某種需要和隨后要解決的問題之間有著明顯的區(qū)別。要解決的問題是比較具體的。如果需要干凈的空氣,要解決的問題可能是降低發(fā)電廠煙囪的排塵量,或者是降低汽車排出的有害氣體。
確定問題階段應該制訂設計對象所有的設計要求。這些設計要求包括輸入量、輸出量特性、設計對象所占據(jù)的空間尺寸以及對這些參量的所有制約因素。我們可以把設計對象看作是黑箱中的某種東西。在這種情況下,我們必須具體確定黑箱的輸入和輸出,以及它們的特性和制約因素。這些設計要求將規(guī)定生產成本、產量、預期壽命、工作范圍、操作溫度和可靠性。
還存在著許多由于設計人員所處的特定環(huán)境或者由于問題本身的性質所產生的隱含設計要求。某個工廠中可利用的制造工藝和設備會對設計人員的工作有所限制,因而成為隱含的設計要求的一部分。例如,一個小工廠中可能沒有冷加工機械設備。因此,設計人員就必須選擇這個工廠中能夠進行的其他的金屬加工方法。工人的技術水平和市場上的競爭情況也是隱含的設計要求的組成部分。
在確定了要解決的問題,并且形成了一系列的書面的和隱含的設計要求之后,設計工作的下一階段是進行綜合以獲得最優(yōu)的結果。因為只有通過對所設計的系統(tǒng)進行分析,才能確定其性能是否滿足設計要求。因此,不進行分析和優(yōu)化就不能進行綜合。
設計工作是一個反復進行的過程。在這個過程中,我們要經歷幾個階段,在對結果進行評價后,再返回到前面的階段。因此,我們可以先綜合系統(tǒng)中的幾個零件,對它們進行分析和優(yōu)化,然后再進行綜合,看它們對系統(tǒng)的其他部分有什么影響。分析和優(yōu)化都要求我們建立或者作出系統(tǒng)的抽象模型,以便對此進行數(shù)學分析。我們將這些模型稱為數(shù)學模型。在建立數(shù)學模型時,我們希望能夠找到一個可以很好地模擬實際物理系統(tǒng)的數(shù)學模型。
評價是整個設計過程中的一個重要階段。評價是一個成功的設計的最后檢驗,通常包括樣機的實驗室試驗。在此階段我們希望弄清楚設計能否真正滿足所有的要求。它是否可靠?在與類似的產品的競爭中它能否獲勝?制造和使用這種產品是否經濟?它是否易于維護和調整?能否從它的銷售或作用中獲得利潤?
與其他人就設計方案進行交流和磋商是設計過程的最后和關鍵階段。毫無疑問,有許多偉大的設計、發(fā)明或創(chuàng)造之所以沒有為人類所利用,就是因為創(chuàng)造者不善于或者不愿意向其他人介紹自己的成果。提出方案是一種說服別人的工作。當一個工程師向經營、管理部門或者其主管人員提出自己的新方案時,就是希望向他們說明或者證明自己的方案是比較好的。只有成功地完成這項工作,為得出這個方案所花費的大量時間和精力才不會被浪費掉。
人們基本上只有三種表達自己思想的方式,即文字材料、口頭表述和繪圖。因此,一個優(yōu)秀的工程師除了掌握技術之外,還應該精通這三種表達方式。如果一個技術能力很強的人在上述三種表達方式中的某一種的能力較差,他就會遇到很大的困難。如果上述三種能力都較差,那將永遠沒有人知道他是一個多么能干的人!
機械設計是一門通過設計新產品或者改進老產品來滿足人類需求的應用技術科學。它涉及工程技術的各個領域,主要研究產品的尺寸、形狀和詳細結構的基本構思,還要研究產品在制造、銷售和使用等方面的問題。
進行各種機械設計工作的人員通常被稱為設計人員或者設計工程師。機械設計是一項創(chuàng)造性的工作。設計工程師不僅在工作上要有創(chuàng)新性,還必須在機械制圖、運動學、動力學、工程材料、材料力學和機械制造工藝等方面具有深厚的基礎知識。
如前面所述,機械設計的目的是生產能夠滿足人類需求的產品。發(fā)明、發(fā)現(xiàn)和科學知識本身是并不一定能給人類帶來益處,只有當它們被用在產品上才能產生效益。因而,應該認識到在一個特定產品進行設計之前,必須先確定人們是否需要這種產品。
應當把機械設計看成是設計人員運用創(chuàng)造性的才能進行產品設計、系統(tǒng)分析和制訂產品的制造工藝的一個良機。掌握工程基礎知識要比熟記一些數(shù)據(jù)和公式更為重要。僅僅使用數(shù)據(jù)和公式是不足以在一個好的設計中做出所需的全部決定。另一方面,應該認真精確地進行所有運算。例如,即使將一個小數(shù)點的位置放錯,也會使正確的設計變成錯誤的。
一個好的設計人員應該勇于提出新的想法,而且愿意承擔一定的風險,當新的方法不適用時,就恢復采用原來的方法。因此,設計人員必須要有耐心,因為所花費的時間和努力并不能保證帶來成功。一個全新的設計,要求摒棄許多陳舊的,為人們所熟知的方法。由于許多人易于墨守成規(guī),這樣做并不是一件容易的事情。一位設計工程師應該不斷地探索改進現(xiàn)有產品的辦法,在此過程中應該認真選擇原有的、經過驗證的設計原理,將其與未經過驗證的新觀念結合起來。
新設計本身會有許多缺陷和未能預料的問題發(fā)生,只有當這些缺陷和問題被解決之后,才能體現(xiàn)出新產品的優(yōu)越性。因此,一個性能優(yōu)越的產品誕生的同時,也伴隨較高的風險。應該強調的是,如果設計本身不要求采用全新的方法,就沒有必要僅僅為了變革的目的而采用新辦法。
在設計的初始階段,應該允許設計人員充分發(fā)揮創(chuàng)造性,不受各種約束。即使產生了許多不切合實際的想法,也會在設計的早期,艱險繪制生產圖紙之前被改正掉。只有這樣,才不至于堵塞創(chuàng)新的思路。通常要提出幾套設計方案,然后加以比較。很有可能在最后選定的方案中,采用了某些未被接受的方案中的一些想法。
心理學家經常談論如何使人們適應他們所操作的機器。設計人員的基本職責是努力使機器來適應人們。這并不是一項容易的工作,因為實際上并不存在著一個對所有人來說都是最優(yōu)的操作范圍和操作過程。
另一個重要問題是,設計工程師必須能夠同其他有關人員進行交流和磋商。在開始階段,設計人員必須就初步設計同管理人員進行交流和磋商,并得到批準。這一般是通過口頭討論,草圖和文字材料進行的。為了進行有效的交流,需要解決下列問題:
(1)所要設計的這個產品是否真正為人們所需要?
(2)此產品與其他公司的現(xiàn)有同類產品相比有無競爭能力?
(3)生產這種產品是否經濟?
(4)產品的維修是否方便?
(5)產品有無銷路?是否可以盈利?
只有時間才能對上述問題給出正確的答案。但是,產品的設計、制造和銷售只能在對上述問題的初步肯定答案的基礎上進行。設計工程師還應該通過零件圖和裝配圖,與制造部門一起對最終設計方案進行磋商。
通常,在制造過程中會出現(xiàn)某個問題??赡軙髮δ硞€零件尺寸或公差作一些更改,使零件的生產變得容易。但是,工程上的更改必須要經過設計人員批準,以保證不會損傷產品的功能。有時,在產品的裝配時或者裝箱外運前的試驗中才發(fā)現(xiàn)設計中的某種缺陷。這些事例恰好說明了設計是一個動態(tài)過程??偸谴嬖谥玫姆椒▉硗瓿稍O計工作,設計人員應該不斷努力,尋找這些更好的方法。
附件2:外文原文(復印件)
Mechanical Design
Shigley J E. Mechanical Engineering Design. New York: McGraw-Hill, 2001
Mechanical design means the design of things and systems of a mechanical nature—machines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics, the materials sciences, and the engineering-mechanics sciences.
The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the decisions which have to be made? Finally, then, how does this design process end?
Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the need may be only a vague discontent, a feeling of uneasiness, or a sensing that something is not right.
The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variation in package weight, and by slight but perceptible variations in the quality of the packaging or wrap.
There is a distinct difference between the statement of the need and the identification of the problem which follows this statement. The problem is more specific. If the end is for cleaner air, the problem might be that of reducing the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts.
Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics and dimensions of the space the thing must occupy and all the limitations on these quantities. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and t he reliability.
There are many implied specifications which result either from the designer’s particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the facilities of a certain plant, constitute restrictions on a designer’s freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. The labor skills available and the competitive situation also constitute implied specifications.
After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place without both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications.
The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract of the system which will admit some form of mathematical analysis. We call these models mathematical models. In creating them it is our hope that we can find one which will simulate the physical system very well.
Evaluation is a significant phase of the total design process. Evaluation is the final proof of a successful design, which usually involves the testing of a prototype in the laboratory. Here we wish to discover if the design really satisfies the need or needs. Is it reliable? Will it compete successfully with similar products? Is it economical to manufacture and to use? Is it easily maintained and abjusted? Can a profit be made from its sale or use?
Communicating the design to others if the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted.
Basically, there are only t here means of communication available to us. These are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped. If ability in all three forms is lacking, on one will ever know how competent that person is!
The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should be expected because failure or criticism seems to accompany every really creative idea. There is a great deal to be learned from a failure, and the greatest gains are obtained by those willing to risk defeat. In the final analysis, the real failure would lie in deciding not to make the presentation at all.
Machine design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of terms of its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product.
People who perform the various functions of machine design are typically called designers, or design engineers. Machine design is basically a creative activity. However, in addition to being innovative, a design engineer must also have a soild background in the areas of mechanical drawing, kinematics, dynamics, materials engineering, strength of materials and manufacturing processes.
As stated previously, the purpose of machine design is to produce a product which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should be recognized, therefore, that a human need must be identified before a particular product is designed.
Good designs require trying new ideas and being willing to take a certain amount of risk, knowing that if the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design generally requires that many old and well-established methods be thrust aside. This is not easy since many people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be used and what mew, untried ideas should be incorporated.
New designs generally have“bugs”or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk. It should be emphasized that, if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change.
During the beginning stages of design, creativity should be allowed to flourish without a great number of constraints. Even though many impractical ideas may arise, it is usually easy to eliminate them in the early stages of design before firm details are required by manufacturing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other. It is entirely possible that the design which is ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise.
Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum.
Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporated. Initially, the designer must communicate a preliminary design to get management approval. This is usually done by verbal discussions in conjunction with drawing layouts and written material. To communicate effectively, the following questions must be answered:
(1)Does the design really serve a human need?
(2)Will it be competitive with existing products of rival companies?
(3)Is it economical to produce?
(4)Can it be readily maintained?
(5)Will it sell and make a profit?
Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with initial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings.
Quite often, a problem will occur during the manufacturing cycle. It may be that a change is required in the dimensioning or telegramming of a part so that is can be more readily produced. This falls in the category of engineering changes which must be approved by the design engineer so that the product function will not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to shipping. These realities simply bear out the fact that design is a living process. There is always a better way to do if and the designer should constantly strive towards finding that better way.
3052
8651
1668