墻板加工機(jī)床總體及夾具設(shè)計(jì)
墻板加工機(jī)床總體及夾具設(shè)計(jì),加工,機(jī)床,總體,整體,夾具,設(shè)計(jì)
激光微加工技術(shù)的進(jìn)步
遼寧石油化工大學(xué)順滑能源學(xué)院
新微加工技術(shù)已經(jīng)開(kāi)發(fā),提供更大的精度生產(chǎn)金屬和聚合物支架等設(shè)備
波長(zhǎng)和材料
對(duì)設(shè)計(jì)工程師誰(shuí)想使用激光在一個(gè)微型的過(guò)程,這兩個(gè)主要特點(diǎn)是需要考慮波長(zhǎng)和脈沖寬度。發(fā)出的光的波長(zhǎng)激光在很大程度上決定了微加工過(guò)程的質(zhì)量。當(dāng)光從一個(gè)激光遇到材料,光這不是反映,從表面進(jìn)入材料在這里被吸收或傳輸(圖1)。波長(zhǎng)的激光光源發(fā)出的常見(jiàn)范圍從157納米的紫外線(UV)結(jié)束的10μm電磁頻譜在紅外(IR)地區(qū)。最常見(jiàn)的激光和波長(zhǎng)他們發(fā)出如圖2所示。
大多數(shù)的材料用于醫(yī)療設(shè)備是金屬或聚合物的基礎(chǔ)。最有效地處理金屬熔煉;歷史上,二氧化碳激光器,它運(yùn)行在一個(gè)波長(zhǎng)的10.6μm已經(jīng)被用于過(guò)程金屬設(shè)備。然而,由于金屬吸收更多的光,激光波長(zhǎng)短,經(jīng)營(yíng)范圍1-μm就開(kāi)始流行。最初摻釹釔鋁石榴石(釔鋁石榴石激光器獲得大量的使用,但最近1-μm波長(zhǎng)光纖激光器,這么叫是因?yàn)楣饫w傳輸激光光束也充當(dāng)增益介質(zhì),幾乎壟斷了市場(chǎng)的金屬切削。
圖1:吸收的光在一個(gè)材料
聚合物可以處理融化,但最有效地處理直接斷了原子間債券,維系鐵鏈。這減少了熱負(fù)荷進(jìn)材料,從而大大提高了過(guò)程的結(jié)果。理想情況下,單個(gè)光子的能量將會(huì)強(qiáng)大到足以打破單個(gè)原子債券。鑒于光子能量的波長(zhǎng)成反比,它遵守低波長(zhǎng)強(qiáng)債券,可以打破。氟聚合物材料是一個(gè)很好的例子,很難機(jī)沒(méi)有低波長(zhǎng)。因?yàn)樗麄兊母哝I能,一個(gè)準(zhǔn)分子激光操作在193海里有必要產(chǎn)生所需的結(jié)果。
在能力范圍內(nèi),二極管泵浦的固體激光器(固體激光泵浦)隔纖維激光和準(zhǔn)分子激光和,因此,可用于機(jī)廣泛的材料。雖然他們從來(lái)沒(méi)有給高吞吐量的纖維為基礎(chǔ)過(guò)程或質(zhì)量的融化削減在含氟聚合物交付193 nm準(zhǔn)分子,它們可以產(chǎn)生優(yōu)秀的結(jié)果如上圖所示在本文的開(kāi)始頁(yè)。
為什么脈沖寬度問(wèn)題
所有的激光加熱材料在加工過(guò)程中,沒(méi)有所謂的冷激光過(guò)程。金屬必須融化,這意味著溫度至少1500 K是必需的。聚合物加工通過(guò)分解原子間債券,導(dǎo)致單個(gè)原子與高動(dòng)能。這個(gè)動(dòng)能可以沉淀為熱到高分子材料。熱破壞的面積在大塊襯底被稱(chēng)為熱影響區(qū)(HAZ)。
圖2。激光波長(zhǎng)、激光加工技術(shù)匹配他們的來(lái)源。
激光是熱源和脈沖激光的熱量積聚在脈沖和減少后迅速完成脈搏。因此,一個(gè)方法讓HAZ降到最低是激光的脈沖寬度盡可能短。圖3顯示了脈沖寬度為一些不同的激光源。因?yàn)榻饘偌庸ぶ饕怯蔁?長(zhǎng)脈沖寬度是必需的。其他材料如聚合物,它們反映強(qiáng)烈,熱,需要較短的脈沖,通常在納秒范圍。
激光加工方法
激光加工技術(shù)的范圍被匹配到特定的激光源為便于參考圖2。不同的激光源更適合不同的處理方法,這也決定了材料,可以加工。對(duì)于介入產(chǎn)品,如冠狀動(dòng)脈支架和相關(guān)交付設(shè)備,不銹鋼歷來(lái)是材料的選擇。在過(guò)去的十年里其他貴金屬如金,合金如鎳鈦諾已經(jīng)成為受歡迎的,因?yàn)樗麄兊奶囟ǖ臋C(jī)械性能。
熔化切割。金屬需要融化,這種技術(shù)稱(chēng)為熔切是最常見(jiàn)的方法,激光微加工這種類(lèi)型的醫(yī)療設(shè)備。在這個(gè)過(guò)程中,氣體是美聯(lián)儲(chǔ)與激光束同軸到材料的表面。氣體輔助有很多用途。首先,它可以用來(lái)控制切削過(guò)程;例如,使用氧氣的速度增加不銹鋼切割和氬防止氧化鎳鈦諾。第二,它可以減少建立碎片吹融化的渣滓遠(yuǎn)離部分。第三,它可以冷卻部分和減少整個(gè)熱影響區(qū)。
掩模投影。聚合物材料,它要求,利用準(zhǔn)分子激光的一個(gè)過(guò)程,即一個(gè)特定掩模投影形狀是由激光聚焦成像部件表面的加工和特性。流體訪問(wèn)端口導(dǎo)管和洞插子的過(guò)濾dev
圖3:脈沖寬度不同的激光源。
技術(shù),如氣體輔助融合切割和準(zhǔn)分子掩模投影已經(jīng)扮演了重要的角色在發(fā)展現(xiàn)有的醫(yī)療設(shè)備。然而,作為新一代的激光源達(dá)到成熟和開(kāi)放范圍的材料,新方法的設(shè)計(jì)師擴(kuò)展激光微加工技術(shù)正在被開(kāi)發(fā)來(lái)增加功能的設(shè)備以及降低制造成本。
遠(yuǎn)程激光加工
在熔化切割和準(zhǔn)分子加工光束是靜止和移動(dòng)的部分。一個(gè)計(jì)算機(jī)輔助設(shè)計(jì)文件反饋到控制系統(tǒng),它將分階段在激光光束來(lái)實(shí)現(xiàn)預(yù)期的削減形狀。高質(zhì)量的階段限制的速度部分可以移動(dòng)和昂貴的控制系統(tǒng)是必要的,以確保減少部分的質(zhì)量。
遠(yuǎn)程激光加工
在熔化切割和準(zhǔn)分子加工光束是靜止和移動(dòng)的部分。一個(gè)計(jì)算機(jī)輔助設(shè)計(jì)文件反饋到控制系統(tǒng),它將分階段在激光光束來(lái)實(shí)現(xiàn)預(yù)期的削減形狀。高質(zhì)量的階段限制的速度部分可以移動(dòng)和昂貴的控制系統(tǒng)是必要的,以確保減少部分的質(zhì)量。
圖4:聚合物和金屬零件加工通過(guò)遠(yuǎn)程切割。
遠(yuǎn)程激光加工技術(shù),激光光束移動(dòng)在一個(gè)靜止的部分。通過(guò)使用低質(zhì)量轉(zhuǎn)向鏡子,可以將激光光束的速度高達(dá)10米/秒,沒(méi)有任何損失在位置精度。歷史上,遠(yuǎn)程激光加工用電流計(jì)是利用削減形狀在平板材料。現(xiàn)在已開(kāi)發(fā)出一種技術(shù),允許遠(yuǎn)程處理上使用管裝置生產(chǎn)特性如高度靈活的、相互關(guān)聯(lián)的關(guān)節(jié)如圖4。短脈沖微微和飛秒系統(tǒng)適合遠(yuǎn)程切割,該技術(shù)還可以用于二極管泵浦,纖維甚至二氧化碳激光加工。
離軸切削
標(biāo)準(zhǔn)管切割系統(tǒng)是建立翻譯和旋轉(zhuǎn)部分根據(jù)激光和通常限于兩個(gè)軸。這限制了設(shè)計(jì)的設(shè)備,因?yàn)榧す饪偸窍鳒p在軸向中心管。添加第三個(gè)軸允許部分離開(kāi)中心管和離軸激光切割是可能的
離軸切削允許的細(xì)微差異減少獲取配置文件和這些打開(kāi)新的醫(yī)療設(shè)備設(shè)計(jì)的可能性。圖5顯示了一個(gè)示例的一個(gè)裝置,最大彎曲角度增加了離軸切割。雖然四軸已經(jīng)一個(gè)共同的特點(diǎn)在控制系統(tǒng)多年,直到最近,這個(gè)技術(shù)已經(jīng)獲得醫(yī)療器械行業(yè)的興趣。
雖然離軸切削是兼容的
圖5:減少配置文件和離軸的切割,離軸部分的一個(gè)例子。這里顯示的設(shè)備是與許可復(fù)制這種夢(mèng)想公司,荷蘭。
實(shí)時(shí)部分對(duì)齊
對(duì)于熔切,重要的是要準(zhǔn)確地控制激光光束的位置表面的部分。設(shè)備比如支架,特征尺寸精度在很大程度上取決于機(jī)械階段和空間變異的管材。機(jī)械定位階段的成本大大增加點(diǎn)位精度和重復(fù)性提高階段。高精度階段用于傳統(tǒng)支架切割操作可以花費(fèi)大約50000美元。
提供改進(jìn)的定位精度較低成本、實(shí)時(shí)定位系統(tǒng)已經(jīng)開(kāi)發(fā)的一部分,它替代了昂貴的階段與低成本的計(jì)算能力。一個(gè)光學(xué)的基礎(chǔ)系統(tǒng)是用來(lái)跟蹤部分的位置相對(duì)于激光光束和提供反饋控制系統(tǒng)來(lái)補(bǔ)償任何位置錯(cuò)誤。
未來(lái)增長(zhǎng)
雖然金屬,如不銹鋼目前占很大一部分醫(yī)療設(shè)備市場(chǎng),未來(lái)的增長(zhǎng)在于更多的難加工材料,如專(zhuān)業(yè)聚合物和金屬合金。傳統(tǒng)的激光加工技術(shù)不具備處理這些材料在24/7生產(chǎn)環(huán)境的新方法是需要的。
結(jié)合技術(shù),如遠(yuǎn)程處理和實(shí)時(shí)定位讓下一代要處理的材料。一個(gè)應(yīng)用程序的組合方法是聚合物支架的加工設(shè)備,這需要一個(gè)高精確度沒(méi)有任何減少的質(zhì)量。聚合物支架的一個(gè)例子,它是由一個(gè)Blueacre加工技術(shù)生產(chǎn)工具,如圖6。與外部直徑1毫米和支柱寬度小于50μm,這些設(shè)備是一個(gè)很好的示范所能達(dá)到的使用這些新技術(shù)。
跟專(zhuān)家
激光微加工是一個(gè)復(fù)雜的領(lǐng)域,它是很重要的,從專(zhuān)家在此領(lǐng)域獲得更全面的了解它的好處和新技術(shù)可以實(shí)現(xiàn)在符合成本效益的方式。討論應(yīng)該開(kāi)始在發(fā)展的早
圖6:聚合物支架加工使用遠(yuǎn)程處理和實(shí)時(shí)定位系統(tǒng)。
期階段,設(shè)備如何與不同材料的激光將和潛在的替代品,是簡(jiǎn)單和廉價(jià)過(guò)程從而減少設(shè)備的花費(fèi)和增加利潤(rùn)。
5
Advances in Laser-Based Micromachining
遼寧石油化工大學(xué)順滑能源學(xué)院
New micromachining techniques have been developed that provide greater accuracy in the production of metal and polymer devices such as stents.
Wavelength and materials
For the design engineer who wants to use lasers in a micromanufacturing process, the two main characteristics to consider are wavelength and pulse width. The wavelength of light emitted by a laser determines to a large extent the quality of the micromachining process. When light from a laser encounters a material, the light that is not reflected from the surface enters the material where it is absorbed or transmitted (Figure 1). The wavelengths emitted by common laser sources range from 157 nm in the ultraviolet (UV) end of the electromagnetic spectrum to 10 μm in the infrared (IR) region. The most common lasers and the wavelengths they emit are shown in Figure 2.
?
The majority of materials employed for medical devices are metal or polymer based. Metals are most efficiently processed by melting; historically, CO2 lasers, which operate at a wavelength of 10.6 μm, have been used to process metal-based devices. However, because metals absorb more light at shorter wavelengths, lasers that operate in the 1-μm range have become more prevalent. Initially YAG (yttrium aluminium garnet) lasers obtained a lot of usage, but more recently?1-μm wavelength fibre lasers, so called because the optical fibre that transmits the laser beam also acts as the gain medium, have almost monopolised the metal cutting market.
Figure 1: Absorption of light in a material.
?
Polymers can be processed by melting, but are most efficiently processed by direct breaking of the interatomic bonds that hold together the chains. This reduces the heat load into the material, which greatly improves process results. Ideally, the energy of a single photon will be strong enough to break an individual atomic bond. Given that the photon energy is inversely proportional to the wavelength, it follows that the lower the wavelength, the stronger the bonds that can be broken. Fluoropolymers are a good example of materials that are hard to machine without a low wavelength. Because of their high bond energy, an excimer laser operating at 193 nm is necessary to produce the required results.
?
In the capability range, diode pumped solid state (DPSS) lasers lie between fibre lasers and excimer lasers and, as such, can be used to machine a wide range of materials. Although they never give the high throughput of a fibre-based melt process or the quality of cut in a fluoropolymer delivered by a 193-nm excimer, they can produce excellent results as shown in the image on the opening page of this article.
?
Why pulse width matters
All lasers heat up material during machining; there is no such thing as a cold laser process. Metals must be melted, which means temperatures of at least 1500 K are required. Polymers are machined by breaking the interatomic bonds, which leads to individual atoms with high kinetic energy. This kinetic energy can be deposited as heat into the polymer material. The area of heat damage in the bulk substrate is referred to as the heated affected zone (HAZ).
?
Figure 2. Laser wavelengths and laser processing techniques matched to their sources.
The laser is the heat source and for a pulsed laser the heat builds up during the pulse and decreases quickly after the pulse is finished. Therefore, one way to keep the HAZ to a minimum is to have the pulse width of the laser as short as possible. Figure 3 shows the pulse widths for a number of different laser sources. Because metals are machined primarily by heat, long pulse widths are required. Other materials such as polymers, which react badly to heat, require shorter pulses, usually in the nanosecond range.
?
Laser processing methods
The range of laser processing techniques are matched to particular laser sources for ease of reference in Figure 2. Different laser sources are more suited for different processing methods and this also determines the materials that can be processed. For interventional products such as coronary stents and associated delivery devices, stainless steel has historically been the material of choice. In the past decade other precious metals such as gold, and alloys such as nitinol have become popular because of their particular mechanical properties.
?
Fusion cutting. Metals require melting, and a technique known as fusion cutting is the most common method of laser micromachining this type of medical device. In this process, gas is fed co-axially with the laser beam onto the surface of the material. The gas assist has a number of uses. First, it can be used to control the cutting process; for example, using oxygen to increase the speed of?stainless steel cutting and argon to prevent the oxidisation of nitinol. Second, it can reduce the build up of debris by blowing the melted dross away from the part. Third, it can cool the part and reduce the overall HAZ.
?
Mask projection. Polymer materials, which require excimer lasers, have utilised a process of mask projection, whereby a particular shape is imaged by the laser onto the surface of the part and the feature machined. Fluid access ports for catheters and holes in embolic filtration devices are commonly machined this way. Although suitable for polymer processing, excimer lasers are expensive to run and require frequent servicing. The method in which the pattern is mask projected onto the device also limits the thickness of the materials that can be processed, which can lead to constraints for device designers.
?
Figure 3: The pulse widths of different laser sources.
Techniques such as gas-assisted fusion cutting and excimer mask projection have played an important role in the development of existing medical devices. However, as the next generation of laser sources reaches maturity and the range of materials open to designers extends, new methods of laser micromachining are being developed to increase the functionality of devices as well as lower the cost of manufacturing.
?
Remote laser processing
In fusion cutting and excimer processing the beam is stationary and the part is moved. A computer-aided design file is fed to the control system, which moves in stages under the laser beam to achieve the desired cut shape. The high mass of the stages limits how fast the part can move and expensive control systems are necessary to ensure the quality of the cut part.
?
Figure 4: Polymer and metal parts machined by remote cutting.
Remote laser processing is a technique whereby the laser beam is moved over a stationary part. By using low mass steering mirrors, it is possible to move the laser beam at speeds up to 10 m/s, without any loss in positional accuracy. Historically, remote laser processing with galvanometers was utilised to cut shapes in flat sheet materials. Now a technique has been developed that allows remote processing to be used on tube devices to produce features such as the highly flexible, interlinked joints shown in Figure 4. Short-pulse pico- and femto-second systems are suitable for remote cutting; the technique can also be adapted for diode pumped, fibre and even CO2 laser processing.
?
Off-axis cutting
Standard tube cutting systems are set up to translate and rotate the part under the laser and are usually limited to two axes. This restricts the design of devices because the laser is always cutting on axis towards the centre of the tube. The addition of a third axis allows the part to move away from the centre of the tube and off-axis laser cutting is possible
?
Off-axis cutting allows subtle differences in the cut profile to be obtained and these open up new design possibilities for medical devices. Figure 5 shows an example of a device, where the maximum bending angle has been increased by off-axis cutting. Although up to four axes have been a common feature in control systems for many years, it is only recently that this technique has gained interest in the medical device sector.
?
Although off-axis cutting is compatible with standard fusion cutting machines and only minor upgrades are necessary to bring the extra axis into use, it is highly suitable for remote processing using a scanning galvanometer, where the mirrors can move the beam off-axis very quickly and without the need for an additional stage.
?
Real-time part alignment
Figure 5: Cut profiles of on- and off-axis cutting, with an example of an off-axis part. The device shown here is reproduced with the kind permission of DEAM Corp., Netherlands.
For fusion cutting, it is important to accurately control the position of the laser beam on the surface of the part. For devices such as stents, feature sizes are largely determined by the accuracy of mechanical stages and the dimensional variation in the tube stock. The cost of mechanical positioning stages increases substantially as stage positional accuracy and repeatability improve. High precision stages used for traditional stent cutting operations can cost approximately US$50,000.
?
To provide improved positional accuracy at a lower cost, a real-time part alignment system has been developed, which replaces expensive stages with lower cost computing power. An optical-based system is used to track the position of the part relative to the laser beam and provide feedback to the control system to compensate for any positional errors.
?
Future growth
Although metals such as stainless steel currently make up a large part of the medical device market, future growth lies in the more difficult to machine materials such as speciality polymers and metal alloys. Traditional laser machining technology is not equipped to process these materials in a 24/7 production environment—new methods are needed.
?
Figure 6: Polymer stents machined using remote processing and a real-time alignment system.
Combining techniques such as remote processing and real-time alignment allow the next generation of materials to be processed. One application of this combined approach is the machining of polymer stent devices, which require a high degree of accuracy without any reduction in quality. An example of a polymer stent, which was machined by a Blueacre Technology production tool, is shown in Figure 6. With an outside diameter of 1 mm and strut widths less than 50 μm, these devices are a good demonstration of what can be achieved using these new techniques.
?
Talk to experts
Laser micromachining is a complex area and it is important to obtain from experts in this field a full understanding of its benefits and how new techniques can be implemented in cost-effective ways. Discussions should start at the early stages of device development on how the laser will interact with different materials and the potential alternatives that are simpler and cheaper to process to thereby reduce the cost of the device and increase profit margins.?
7
畢 業(yè) 論 文
題目:墻板加工機(jī)床總體及夾具設(shè)計(jì)
系 別 : 機(jī)械工程系
專(zhuān) 業(yè) : 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
班 級(jí) :
姓 名 :
成 績(jī) :
指 導(dǎo) 教 師 :
遼寧石油化工大學(xué)順華能源學(xué)院
2013年6月4日
畢業(yè)設(shè)計(jì)獨(dú)創(chuàng)性聲明
本人所呈交的畢業(yè)設(shè)計(jì),是在導(dǎo)師的指導(dǎo)下,獨(dú)立進(jìn)行研究所取得的成果。除文中已經(jīng)注明引用的內(nèi)容外,本論文不含任何其他個(gè)人或集體已經(jīng)發(fā)表或撰寫(xiě)的作品。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體,均已在文中標(biāo)明。
本聲明的法律后果由本人承擔(dān)。
論文作者(簽名):
2013年 6月 4 日
畢業(yè)設(shè)計(jì)使用授權(quán)聲明
本人愿意按照學(xué)校要求提交畢業(yè)設(shè)計(jì)的印刷本和電子版,同意學(xué)校保存畢業(yè)設(shè)計(jì)的印刷本和電子版,或采用影印、縮印、數(shù)字化或其它復(fù)制手段保存論文;同意學(xué)校在不以營(yíng)利為目的的前提下,建立目錄檢索與閱覽服務(wù)系統(tǒng),公布設(shè)計(jì)的部分或全部?jī)?nèi)容,允許他人依法合理使用。
論文作者(簽名):
2013年 6 月4日
摘要:
機(jī)械加工是一種用加工機(jī)械對(duì)工件的外形尺寸或性能進(jìn)行改變的過(guò)程。按被加工的工件處于的溫度狀態(tài)﹐分為冷加工和熱加工。一般在常溫下加工,并且不引起工件的化學(xué)或物相變化﹐稱(chēng)冷加工。一般在高于或低于常溫狀態(tài)的加工﹐會(huì)引起工件的化學(xué)或物相變化﹐稱(chēng)熱加工。冷加工按加工方式的差別可分為切削加工和壓力加工。熱加工常見(jiàn)有熱處理﹐煅造﹐鑄造和焊接。
Machining is a kind of used machinery for the appearance of workpiece dimension or performance change process. According to the processed workpiece in the temperature of the condition, divided into cold and hot working. General processing at room temperature, and does not cause the chemical and phase change of workpiece, says cold work. General processing in higher or lower than the normal temperature condition, can cause artifacts of chemical or physical phase change, say hot working. Cold work according to the difference of processing methods can be divided into cutting machining and pressure. Hot working common heat treatment, forging, casting and welding.
目錄
1 引言··········································1
2 機(jī)床用途及設(shè)計(jì)數(shù)據(jù)····························3
2.1機(jī)床用途··································3
2.2設(shè)計(jì)數(shù)據(jù)··································3
3 總體設(shè)計(jì)······································5
3.1工件研究及查詢(xún)資料························5
3.2設(shè)計(jì)方案··································7
3.3設(shè)計(jì)計(jì)算··································7
3.4組合機(jī)床各部分選取························9
3.5 機(jī)床的總體布局···························10
3.6 “三圖一卡”的制定·······················11
4 夾具設(shè)計(jì)·····································16
4.1 機(jī)床夾具·································16
4.2 方案擬定·································17
4.3 夾具的受力計(jì)算···························20
4.4 夾具的主要零件設(shè)計(jì)及選用·················21
5 結(jié)束語(yǔ)·······································25
6 致謝·········································26
7參考文獻(xiàn)······································27
8
1引言
組合機(jī)床是以通用部件為基礎(chǔ),配以按工件特定外形和加工工藝設(shè)計(jì)的專(zhuān)用部件和夾具,組成的半自動(dòng)或自動(dòng)專(zhuān)用機(jī)床。它一般采用多軸、多刀、多工序、多面或多工位同時(shí)加工的方式,生產(chǎn)效率比通用機(jī)床高幾倍至幾十倍。由于通用部件已經(jīng)標(biāo)準(zhǔn)化和系列化,可根據(jù)需要靈活配置,能縮短設(shè)計(jì)和制造周期。因此,組合機(jī)床兼有低成本和高效率的優(yōu)點(diǎn),在大批、大量生產(chǎn)中得到廣泛應(yīng)用,并可用以組成自動(dòng)生產(chǎn)線。
組合機(jī)床一般用于加工箱體類(lèi)或非凡外形的零件。加工時(shí),工件一般不旋轉(zhuǎn),由刀具的旋轉(zhuǎn)運(yùn)動(dòng)和刀具與工件的相對(duì)進(jìn)給運(yùn)動(dòng),來(lái)實(shí)現(xiàn)鉆孔、擴(kuò)孔、锪孔、鉸孔、鏜孔、銑削平面、切削內(nèi)外螺紋以及加工外圓和端面等。有的組合機(jī)床采用車(chē)削頭夾持工件使之旋轉(zhuǎn),由刀具作進(jìn)給運(yùn)動(dòng),也可實(shí)現(xiàn)某些回轉(zhuǎn)體類(lèi)零件(如飛輪、汽車(chē)后橋半軸等)的外圓和端面加工。
專(zhuān)用機(jī)床是隨著汽車(chē)工業(yè)的興起而發(fā)展起來(lái)的。在專(zhuān)用機(jī)床中某些部件因重復(fù)使用,逐步發(fā)展成為通用部件,因而產(chǎn)生了組合機(jī)床。
為了使組合機(jī)床能在中小批量生產(chǎn)中得到應(yīng)用,往往需要應(yīng)用成組技術(shù),把結(jié)構(gòu)和工藝相似的零件集中在一臺(tái)組合機(jī)床上加工,以提高機(jī)床的利用率。這類(lèi)機(jī)床常見(jiàn)的有兩種,可換主軸箱式組合機(jī)床和轉(zhuǎn)塔式組合機(jī)床。
我國(guó)的機(jī)械工業(yè)正朝著“三化”的方向發(fā)展,這為組合機(jī)床的利
2
用開(kāi)辟了廣闊的前景。組合機(jī)床也必將在長(zhǎng)期生產(chǎn)實(shí)踐中不斷的得以完善,在專(zhuān)業(yè)化生產(chǎn)中充分發(fā)揮它的作用。
由于設(shè)計(jì)者所掌握的知識(shí)有限,又缺乏設(shè)計(jì)經(jīng)驗(yàn),本次設(shè)計(jì)難免有不妥和誤漏之處,懇請(qǐng)各位老師給予批評(píng)指正,以便在實(shí)際工作中加以改正。
關(guān)鍵詞:組合機(jī)床,專(zhuān)用機(jī)床,“三化”
2 機(jī)床用途及設(shè)計(jì)數(shù)據(jù)
2.1 機(jī)床用途:加工電葫蘆墻板孔
2.2 設(shè)計(jì)數(shù)據(jù):
年產(chǎn)量
30000件
工作制度
二班制
按每班6小時(shí)
每年工作300天計(jì)
加工內(nèi)容
鉆削墻板上4個(gè)Ф25的孔(精度要求不同
工件材料
Q235
其他數(shù)據(jù)
見(jiàn)下零件圖
被加工零件
3總體設(shè)計(jì)
3.1工件研究及查詢(xún)資料
(1) 查《金屬切屑手冊(cè)》得
材料
Q235
切屑速度V
24m/s
進(jìn)給量f
0.32mm/r
背吃刀量
12.5mm
硬度HB
36-40HRC
抗拉強(qiáng)度
375Mpa
注:進(jìn)給量f可根據(jù)情況調(diào)小,故取f=0.1mm/r以防止機(jī)床一年中的閑置時(shí)間過(guò)長(zhǎng)
(2) 查《現(xiàn)代實(shí)用機(jī)床設(shè)計(jì)手冊(cè)》得
組合機(jī)床功率傳遞效率為 75%-85%
(3) 查《機(jī)床夾具設(shè)計(jì)手冊(cè)》得
①鉆削切削力的計(jì)算方式
工件材料
結(jié)構(gòu)鋼
加工方式
鉆
擴(kuò)鉆
刀具材料
高速鋼
切削扭矩計(jì)算公式
切削力計(jì)算公式
②鉸刀切削力的計(jì)算公式
工件材料
結(jié)構(gòu)鋼
刀具材料
硬質(zhì)合金
加工方式
擴(kuò)孔
計(jì)算
公式
切削力
背向力
進(jìn)給力
M----切削扭矩(N*M) D----鉆頭直徑
---切削層的深度(mm) 對(duì)于擴(kuò)鉆=0.5(D-d)
d----擴(kuò)孔前的的孔徑(mm) F----軸向切削力(N)
f----每一轉(zhuǎn)進(jìn)給量(mm)
----修正系數(shù) 結(jié)構(gòu)鋼
3.2設(shè)計(jì)方案
有被加工的零件的零件圖可知,零件需要加工出4個(gè)孔,而且上面的兩個(gè)孔的粗糙度比下面兩個(gè)空的粗糙度高,所以不能夠使用四根鉆頭同時(shí)加工出四個(gè)孔,故我選擇雙向進(jìn)給的加工方式。先鉆出兩個(gè)小的孔,在加工出零件所要求的孔。
我選取D=24mm高速鉆頭兩個(gè)在右主軸箱的上側(cè),D=18mm高速鉆頭兩個(gè)在右主軸箱的下側(cè),D=25mm鉸刀在左主軸箱上側(cè),D=25mm高速鉆頭在左主軸箱下側(cè)。
3.3設(shè)計(jì)計(jì)算
(1)運(yùn)動(dòng)計(jì)算
(2)右側(cè)功率計(jì)算
① D=24mm鉆頭
② D=18mm鉆頭
③右側(cè)總功率計(jì)算
選取傳遞效率為0.75,則
(3) 左側(cè)功率計(jì)算
① D=25mm鉆頭
② D=25mm鉸刀
③左側(cè)總功
取傳遞效率為0.75,則
3.4組合機(jī)床各部分選取
(1)動(dòng)力箱選?。?
經(jīng)計(jì)算,右側(cè)加工所需的總功率為2.4kw。為滿足使用要,查 附表1 選取TD40A-3.0kw型號(hào)動(dòng)力箱。左側(cè)所需功率為0.584kw,選取TD25A-0.8kw型號(hào)動(dòng)力箱。
(2)液壓動(dòng)力滑臺(tái)選取
以動(dòng)力箱的大小形狀為參考,查 附表2 選取右側(cè)液壓動(dòng)力滑臺(tái)為 HY40A-Ⅰ 型。選取左側(cè)液壓動(dòng)力滑臺(tái)為 HY25A-Ⅰ 型。
(3)滑臺(tái)側(cè)底座選取
因?yàn)榛_(tái)側(cè)底座為標(biāo)準(zhǔn)件,結(jié)合液壓動(dòng)力滑臺(tái),選取名義尺
為400的液壓側(cè)底座為右側(cè)側(cè)底座,名義尺寸為250的液壓側(cè)底座為左側(cè)的側(cè)底座。
(4)中間底座選取
中間底座同樣為國(guó)家標(biāo)準(zhǔn),結(jié)合側(cè)底座,為滿足使用要求計(jì)人體條件,選取長(zhǎng)800,寬500,高630.的中間底座。
3.5 機(jī)床的總體布局
(1) 加工一般通孔的工作循環(huán)
該機(jī)床的動(dòng)力頭從初始位置起,通過(guò)液壓系統(tǒng)和電器操縱系統(tǒng),即可實(shí)現(xiàn)快進(jìn)—工進(jìn)—快退—原位停止的循環(huán)。其工作循環(huán)圖如圖3所示:
快退
快進(jìn)
工進(jìn)
+
工作循環(huán)圖
過(guò)程為:動(dòng)力頭起動(dòng)后快進(jìn)一段距離,當(dāng)擋鐵碰到行程開(kāi)關(guān)后,通過(guò)液壓系統(tǒng)由快進(jìn)自動(dòng)轉(zhuǎn)為工作進(jìn)給,動(dòng)力頭以慢速完成加工循環(huán),當(dāng)擋鐵壓下終點(diǎn)處的形成開(kāi)關(guān)后,動(dòng)力頭立即變?yōu)榭焖偻嘶?,到原位后擋鐵壓下原位行程開(kāi)關(guān),動(dòng)力頭立即停止,并發(fā)給機(jī)床必要的互鎖信號(hào)。
(2)機(jī)床的運(yùn)動(dòng)分配
A.主運(yùn)動(dòng)
由主電機(jī)提供動(dòng)力,經(jīng)變速箱變速后將動(dòng)力傳給主軸箱通過(guò)萬(wàn)向聯(lián)軸節(jié)使主軸旋轉(zhuǎn)。
變速箱是由主箱體和后蓋所組成。主軸轉(zhuǎn)速級(jí)數(shù)的變化是靠交換齒輪來(lái)實(shí)現(xiàn)的。這種變速機(jī)構(gòu)的構(gòu)造最簡(jiǎn)單。
B. 進(jìn)給運(yùn)動(dòng)
油泵電機(jī)帶動(dòng)油泵提供高壓油,通過(guò)進(jìn)給油缸推動(dòng)滑臺(tái),實(shí)現(xiàn)快進(jìn),工進(jìn),快退,完成進(jìn)給運(yùn)動(dòng)。同時(shí)通過(guò)夾緊油缸使夾具動(dòng)作來(lái)夾壓工件。進(jìn)給油缸和夾緊油缸都通過(guò)各自的電氣開(kāi)關(guān)來(lái)控制。
3.6 “三圖一卡”的制定
(1)機(jī)床尺寸聯(lián)系圖
機(jī)床尺寸聯(lián)系圖是反映機(jī)床各個(gè)部分的尺寸和位置關(guān)系的圖
機(jī)床尺寸聯(lián)系圖
(2)加工工序圖
加工工序圖是反映被加工零件的加工部位的圖
加工工序圖
(3)加工示意圖
加工示意圖是根據(jù)生產(chǎn)率要求和工序圖的要求而擬訂的機(jī)床工藝方案。它是刀具、輔具的布置圖,是組合機(jī)床部件設(shè)計(jì)的重要依據(jù),是機(jī)床布局和機(jī)床性能的原始要求,也是機(jī)床試車(chē)前對(duì)刀和調(diào)整機(jī)床的技術(shù)資料。
左側(cè)和右側(cè)加工示意圖
(4)生產(chǎn)率計(jì)算卡
① 理想生產(chǎn)率Q
② 實(shí)際生產(chǎn)率
工步名稱(chēng)
時(shí)間(min)
裝工件
2
工件夾緊
0.3
右動(dòng)力箱快進(jìn)
0.08
右動(dòng)力箱Ⅰ工進(jìn)
1.21
右動(dòng)力箱Ⅱ工進(jìn)
0.3
右動(dòng)力箱快退
0.1
左動(dòng)力箱快進(jìn)
0.08
左動(dòng)力箱Ⅰ工進(jìn)
1.21
左動(dòng)力箱Ⅱ工進(jìn)
0.3
左動(dòng)力箱快退
0.1
松開(kāi)工件
0.3
卸工件
2
③ 機(jī)床負(fù)荷率
本機(jī)床加工速度相對(duì)較慢,這樣可以是機(jī)床在較長(zhǎng)的時(shí)間內(nèi) 處于工作狀態(tài),以此來(lái)避免機(jī)床的老化。
4 夾具設(shè)計(jì)
4.1 機(jī)床夾具
機(jī)械制造過(guò)程中用來(lái)固定加工對(duì)象,使之占有正確的位置,以接受施工或檢測(cè)的裝置。又稱(chēng)卡具。從廣義上說(shuō),在工藝過(guò)程中的任何工序,用來(lái)迅速、方便、安全地安裝工件的裝置,都可稱(chēng)為夾具。例如焊接夾具、檢驗(yàn)夾具、裝配夾具、機(jī)床夾具等。其中機(jī)床夾具最為常見(jiàn),常簡(jiǎn)稱(chēng)為夾具 。在機(jī)床上加工工件時(shí),為使工件的表面能達(dá)到圖紙規(guī)定的尺寸、幾何形狀以及與其他表面的相互位置精度等技術(shù)要求 ,加工前必須將工件裝好(定位)、夾牢(夾緊)。夾具通常由定位元件(確定工件在夾具中的正確位置)、夾緊裝置 、對(duì)刀引導(dǎo)元件(確定刀具與工件的相對(duì)位置或?qū)б毒叻较?、分度裝置(使工件在一次安裝中能完成數(shù)個(gè)工位的加工,有回轉(zhuǎn)分度裝置和直線移動(dòng)分度裝置兩類(lèi))、連接元件以及夾具體(夾具底座)等組成。
4.2 方案擬定
(1)定位方案:
被加工零件
如圖所示,被加工零件的中心有一個(gè)大圓孔,被加工零件需要在機(jī)床上加工出四個(gè)孔,被加工的四個(gè)孔之間的間距和位置是固定,所以該零件需要固定全部的六個(gè)自由度。為了固定六個(gè)自由度,可以采用一面一銷(xiāo)定位方式。用一個(gè)銷(xiāo)位于零件的大圓孔內(nèi)。這樣就定位了零件的三個(gè)移動(dòng)自由度,兩個(gè)轉(zhuǎn)動(dòng)自由度,只差一個(gè)轉(zhuǎn)動(dòng)自由度沒(méi)有定位了,為了是零件在夾具上拆卸方便,采用在零件的底部位置設(shè)定一個(gè)定位銷(xiāo),使零件轉(zhuǎn)動(dòng)到指定位置時(shí),零件的位置被完全確定。
定位件
(2)夾緊方案
夾具的夾緊方法有很多,但現(xiàn)代夾具大多采用液壓的方式夾緊,這樣更方便實(shí)現(xiàn)生產(chǎn)與加工的自動(dòng)化或半自動(dòng)化,可以大大的提高生產(chǎn)效率和節(jié)省人力。
因?yàn)樵摿慵菓?yīng)用在雙面進(jìn)給的組合機(jī)床上,因我將提供夾緊力的液壓缸安放在定位件的下方,采用杠桿原理來(lái)夾緊被加工零件。
夾具裝配圖
4.3 夾具的受力計(jì)算
(1)右動(dòng)力頭Ф24mm鉆頭受力:
(2)右動(dòng)力頭Ф18mm鉆頭受力:
(3)左動(dòng)力頭Ф25mm鉆頭受力:
(4)左動(dòng)力頭Ф25mm鉸刀受力:
(5)總受力;
4.4 夾具的主要零件設(shè)計(jì)及選用
(1)定位件的強(qiáng)度計(jì)算
公式:
則:
因此:
材料
45鋼
故45鋼合用
(2)液壓缸的驗(yàn)算
因?yàn)橹挥性谧髣?dòng)力頭進(jìn)給的時(shí)候,液壓缸才承受力,因此,只需要在計(jì)算中代入左動(dòng)力頭加工時(shí)所施加的力。
夾緊力計(jì)算:
1.5
1.0
1.0
1.0
1.3
1.0
1.0
液壓缸參數(shù)
缸徑(mm)
63
活塞桿徑(mm)
30
油缸(MPa)
13.6
作用了(N)
36456
故液壓缸合用
(3) 壓桿
壓桿在夾具中起到了關(guān)鍵的作用,它與液壓缸的活塞桿連接,并與缸體的上部通過(guò)銷(xiāo)連接在一起而構(gòu)成一個(gè)連桿機(jī)構(gòu),從而是液壓缸中的活塞運(yùn)動(dòng)轉(zhuǎn)換為壓緊工件的運(yùn)動(dòng),也是液壓缸內(nèi)的壓力轉(zhuǎn)換為壓緊工件的壓力實(shí)現(xiàn)對(duì)工件的夾緊。
(4) 銷(xiāo)、螺釘、螺栓以及其他部件
在夾具中,存在一些小的部件,但是有非常重要,而如果對(duì)它們進(jìn)行設(shè)計(jì)將耗費(fèi)大量的時(shí)間和精力,因此對(duì)于這些部件,我們通常采取選用標(biāo)準(zhǔn)的物件,以此來(lái)節(jié)約時(shí)間和設(shè)計(jì)成本。
5 結(jié)束語(yǔ)
組合機(jī)床是一種高效率機(jī)床,有特定的使用條件,并不是在任何情況下都能收到良好的經(jīng)濟(jì)效果,但是組合機(jī)床本身有許多是采用的標(biāo)準(zhǔn)件進(jìn)行組裝而成的,因此也具有非常強(qiáng)的經(jīng)濟(jì)性和實(shí)用性。
本次設(shè)計(jì)的機(jī)床主要是對(duì)墻板的四個(gè)孔進(jìn)行加工,零件采用一面一銷(xiāo)的定位方式,液壓夾緊,對(duì)墻板的四個(gè)螺栓孔進(jìn)行兩次加工,因?yàn)楦骺椎募庸ぞ纫蟛煌瑸榱颂岣吖ぷ餍?,減少工人的勞動(dòng)強(qiáng)度,采取了雙向進(jìn)給的加工方式。同時(shí)在設(shè)計(jì)過(guò)程中大部分選用了標(biāo)準(zhǔn)件和通用部件,從而進(jìn)一步減少了制造成本,從而增加了經(jīng)濟(jì)效益,同時(shí)也使得維修更加方便。
本機(jī)床還存在一些問(wèn)題,機(jī)床只能加工特定的零件,一旦加工零件發(fā)生變化,則該機(jī)床就需要重新設(shè)計(jì),重新選擇基本部件。對(duì)實(shí)行機(jī)械加工中機(jī)床的通用性上的表現(xiàn)明顯不足。
6.致謝
在這里我要向所有在這次畢業(yè)設(shè)計(jì)過(guò)程中幫助過(guò)我的人表示衷心的感謝。
首先,我特別感謝的就是我的導(dǎo)師。他在整個(gè)設(shè)計(jì)期間給予了我殷切關(guān)懷和諄諄教誨。老師深厚的理論功底,嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度,一絲不茍的工作作風(fēng),敏銳的洞察力使我受益終身。在此,我表示我最衷心的感謝和崇高的敬意。如果沒(méi)有他的鼓勵(lì)和幫助,這次畢業(yè)設(shè)計(jì)將會(huì)很難順利完成;如果沒(méi)有他的耐心指導(dǎo),畢業(yè)設(shè)計(jì)過(guò)程中的遇到的困難和問(wèn)題也將很難解決。趙教授在這次畢業(yè)設(shè)計(jì)中起到了關(guān)鍵性的作用,我要在這里再次向他表示衷心的感謝。
我還要感謝在這四年里教過(guò)我的所有老師。他們?cè)谖以诖髮W(xué)學(xué)習(xí)這四年中給了我很大的幫助,并傳授了我很多知識(shí),這些知識(shí)是我一生都將受益的,我向他們真誠(chéng)的說(shuō)聲:謝謝!
我也要感謝我的同學(xué)們,感謝他們?cè)谶@次設(shè)計(jì)中對(duì)我的幫助,本次設(shè)計(jì)中遇到的有些問(wèn)題也是他們幫助我一起解決的。
我要向我引用的參考文獻(xiàn)的作者表示感謝,許多重要的公式都是來(lái)自參考文獻(xiàn),他們的前期工作正是我現(xiàn)在設(shè)計(jì)完成的基礎(chǔ)。
我還要向我的家人,朋友表示感謝,感謝他們?cè)谶@次設(shè)計(jì)中對(duì)我的支持,理解和幫助。
最后,謹(jǐn)向百忙中抽出時(shí)間來(lái)參加我的論文答辯的各位專(zhuān)家、老師和
學(xué)者,表示我最衷心的感謝。
7參考文獻(xiàn)
(1) 張耀宸.機(jī)械加工工藝設(shè)計(jì)手冊(cè)[M].北京:航空工業(yè)出版社,1987.12
(2) 大連組合機(jī)床研究所.組合機(jī)床設(shè)計(jì)參考圖冊(cè)[M].北京:機(jī)械工業(yè)出版社,1975
(3) 大連組合機(jī)床研究所.組合機(jī)床設(shè)計(jì)(機(jī)械部分)[M].北京:機(jī)械工業(yè)出版社,1975
(4) 沈陽(yáng)工業(yè)大學(xué),大連鐵道學(xué)院,吉林工學(xué)院.組合機(jī)床設(shè)計(jì)[M].上海:上??茖W(xué)技術(shù)出1985
(5) 第一機(jī)械工業(yè)部.金屬切削機(jī)床產(chǎn)品樣本[M].北京:機(jī)械工業(yè)出版社,1978
(6) 吉林工業(yè)大學(xué),吉林工學(xué)院,東北工學(xué)院.金屬切削機(jī)床設(shè)計(jì)(下冊(cè))[M].上海:上??茖W(xué)技術(shù)出版社,1980.2
(7) 上海柴油機(jī)廠工藝設(shè)備研究所.金屬切削機(jī)床夾具設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1984
(8) 李洪,蔡群禮.機(jī)床設(shè)計(jì)指導(dǎo)書(shū)[M].沈陽(yáng):東北工學(xué)院.1982
(9) 孫志禮,冷興聚,魏延剛,曾海泉.機(jī)械設(shè)計(jì)[M].沈陽(yáng):東北大學(xué)出版社.2003.3
(10) 許鎮(zhèn)宇,邱宣懷.機(jī)械零件[M].北京:高等教育出版社.1981
(11) 東北工學(xué)院.機(jī)械零件設(shè)計(jì)手冊(cè)(第二版上冊(cè))[M].北京:冶金工業(yè)出版社.1980.11
(12) 鞏云鵬,田萬(wàn)錄,張祖立,黃秋波.機(jī)械設(shè)計(jì)課程設(shè)計(jì)[M].沈陽(yáng):東北大學(xué)出版社,2000.12
(13)彭林中,張宏.機(jī)械切削工藝參數(shù)數(shù)查手冊(cè)
(14) T.Y. Chenetal. International Journal of Machine Tools & Manufacture . 1999
右動(dòng)力頭
TD40A
右液壓滑臺(tái)
HY40A
右側(cè)底座
GB3668.6-83
左動(dòng)力頭
TD25A
左液壓滑臺(tái)
HY25A
左側(cè)底座
GB3668.6-83
中間底座
GB3668.7-83
定位件
45鋼
壓桿
45鋼
螺栓
GB5785-86
墊圈
GB93-87
螺母
GB6171-86
液壓缸體
45鋼
插銷(xiāo)
GB117-86
法蘭盤(pán)
HT20-40
定位銷(xiāo)
GB117-86
活塞桿
45鋼
螺釘
GB70-85
32
收藏