購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
徐州師范大學(xué)本科生畢業(yè)設(shè)計(jì) 加熱缸體注塑模設(shè)計(jì)
翻譯原文一:
Design of Small Core Drawing
Mechanism for Injection Mould
Wu Guang ming
(Dongguan Science and Technical School, of Guang Dong province Dongguan 523000)
Abstract: Four kinds of small and nimble core drawing mechanism for injection mould of case type plastic items are introduced in details.
Key words: injection mould, core drawing, sliding block
Case type plastic items play an important role in the production of modern plastic-electronic items. In general, knots sometimes together with a bolt are used to enhancer and smooth the surface of the electronic products. A mould often holds several work pieces, and core drawing is used many times in just one work piece. If we use traditional outside slanting pillar or inside slanting slide block in core drawing, the mechanism of the mould would be very complicated. In practice,
Figure 1
1. moving die insert 2. moving die pate 3. spring 4. core slide block
5. fixed die insert 6. fixed die plate 7. lock insert block
8. center pin 9. spring 10.fixed plate of moving die
according to the property that the stroke of core drawing of plastic items is very short, several kinds of core drawing mechanisms are designed as follows.
1 Outside core drawing mechanism
Outside core drawing mechanism as in Fig.1 is similar to traditional slanting pillar core drawing mechanism, Because of the short stroke of core drawing, slanting pillar is removed. Lock insert block 7 and core slide block 4 serve together to accomplish the action of reset and lock. When the mould is opened, moving die and fixed die are parted and core slide block 4 finishes core drawing under control of spring 3. Center pin 8 is used to locate the core slide block. Core slide block 4 has T guide way machined to ensure the accuracy of core drawing movement.
Figure 2
1. moving die insert 2. center pin 3. core slide block 4. fixed die insert
5. lock insert 6. fixed die plate 7. spring 8. moving die plate
2 Inside core drawing mechanism
Slanting slide block detached core drawing or drawing or slanting thimble are often used in traditional inside core drawing mechanisms. It is hard to machine. Because the distance of friction movement of slanting slide pole is long, and friction device is hidden in the middle of the mould, it is difficult to lubricate and the slanting slide pole tends to be easily worn down. Slanting slide block inside drawing mechanism in Fig.2 solves this problem well. When the dies are closed, core slide block 3 resets under the influence of lock insert 5. When the dies are opened, block 3 and lock insert 5 is parted and block 3 finishes core drawing under control of spring 7. Center pin 2 is used to locate the core slide block. The whole mechanism is dependent and easy to machine.
3 Compound mechanism that core draws inside and outside at the same time
When a mould holds several different work-pieces and has to be core drawn inside and outside at the same time, compound core drawing mechanism illustrated in Fi.3 can be used. The picture shows the state when the dies are closed. The
Figure 3
1.moving die insert 2.spring 3. outside core insert 4. fixed die insert
5.fixed die plate 6. lock insert 7. fixed die insert 8. moving die insert
9.inside core insert 10. core slide block 11. center pin 12. moving die plate
slants of lock insert 6 and core slide block 10 cooperate to reset and lock the core. When the dies are opened, core slide block 10 finishes inside and outside core drawing at the same time under control of spring 2. The position is limited by center pin 11. To make the core easily machined and conveniently maintained, the core can be made to be assembled. When two different cases need core drawing outside at the same time, compound mechanism in Fig.4 can be used. With the use of two slanting insert blocks, the mechanism is simplified, and the strength condition on lock insert is greatly improved.
4 A simplified core drawing mechanism
For outside core drawing whole mould space is not so large, a simplified mechanism as shown in Fig.5 can be used. When the dies are closed, slanting slide block 3 oppresses spring 6 and resets under the influence of fixed die insert 1.
Figure 4
1. moving die insert 2. fixed die plate 3. spring 4. moving die plate
5. spring 6. core slide block 7. fixed die insert 8. fixed die plate
9. lock insert 10. fixed die insert 11. core slide block
12.spring 13.spring 14.moving die insert
Two guide pins 5 serve to guide. When the dies are opened, moving die insert 1 is parted from moving plate 4 and slanting slide block 3 slides up along guide pin 5 to finish core drawing under influence of spring 6. Core drawing is accomplished in one instant so that the time of opening mould is shortened and the productivity is improved. This kind of core drawing mechanism can be changed to be used for fixed mould core drawing.
It has been proved by practice that core drawing mechanisms illustrated above are simple and dependent. We are easy to maintain and the production costs are greatly reduced. But in practice we must check the elasticity of springs from time to time in case they are out of use.
Figure 5
1. fixed die insert 2. moving die insert 3. slanting slide block
4. moving die plate 5. guide pin 6. spring 7. blot
References
1 馮炳堯等.模具設(shè)計(jì)與制造簡(jiǎn)明手冊(cè)[M].上海:上??茖W(xué)技術(shù)出版社,1985
2 塑料模具設(shè)計(jì)手冊(cè)編寫組.塑料模具設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1982
譯文一:
注射模小型抽芯機(jī)構(gòu)的設(shè)計(jì)
吳光明
東莞理工學(xué)校(廣東東莞 52300)
摘要: 介紹了外殼類塑件注射模設(shè)計(jì)生產(chǎn)中,行程較短抽芯的幾種簡(jiǎn)單、靈巧的抽芯機(jī)構(gòu),可為類似塑件的注射模設(shè)計(jì)提供幫助。
關(guān)鍵詞: 注射模 抽芯 滑塊
在塑膠電子產(chǎn)品的生產(chǎn)中,外殼類塑件的批量較大。前殼和后殼一般采用扣位加螺釘?shù)穆?lián)接方式,以使電子產(chǎn)品外觀光滑美觀。一個(gè)面殼注射模經(jīng)常是因有多處扣位而需要抽芯。而1副模具中通常是1模幾件。若采用傳統(tǒng)的斜導(dǎo)柱外側(cè)抽芯和斜滑塊內(nèi)側(cè)抽芯,將會(huì)使模具結(jié)構(gòu)十分復(fù)雜。生產(chǎn)中根據(jù)殼類塑件扣位抽芯行程很短的特點(diǎn),設(shè)計(jì)了如下所述的幾種常用的、簡(jiǎn)單靈巧的抽芯結(jié)構(gòu)。
1 簡(jiǎn)單的外側(cè)抽芯機(jī)構(gòu)
如圖1所示的外側(cè)抽芯機(jī)構(gòu)與傳統(tǒng)的斜導(dǎo)柱抽芯機(jī)構(gòu)相類似,只是由于抽芯行程很短,故減去斜導(dǎo)柱,只是靠鎖緊楔塊4和型芯滑塊5的斜面配合來(lái)完成滑塊的復(fù)位和鎖緊。開模時(shí),動(dòng)定模分開,型芯滑塊5在彈簧6的作用下完成抽芯動(dòng)作。定位銷釘7起定位作用。型芯滑塊5上加工有T型導(dǎo)軌以保證抽芯運(yùn)動(dòng)精度。
圖1 外側(cè)抽芯機(jī)構(gòu)
1.定模型芯 2.動(dòng)模型芯 3.定模板 4.鎖緊楔塊 5.型芯滑塊
6.彈簧 7.定位銷釘 8.彈簧 9.動(dòng)模扳 10.動(dòng)模固定板
2 簡(jiǎn)單的內(nèi)側(cè)抽芯機(jī)構(gòu)
傳統(tǒng)的內(nèi)側(cè)抽芯機(jī)構(gòu)多采用斜滑塊內(nèi)側(cè)分型抽芯或斜滑桿頂出機(jī)構(gòu)。加工復(fù)雜,斜滑桿磨擦運(yùn)動(dòng)距離長(zhǎng),磨擦機(jī)構(gòu)藏于模具中央,難以潤(rùn)滑,斜滑桿易磨損。圖2所示的斜滑塊內(nèi)側(cè)抽芯機(jī)構(gòu)較好地解決了這個(gè)問題。合模時(shí),型芯滑塊6在鎖緊楔塊5的作用下復(fù)位。開模時(shí)型芯滑塊6和鎖緊楔塊5分開,型芯滑塊6在彈簧8的作用下完成抽芯動(dòng)作。定位銷釘2起定位作用。整個(gè)機(jī)構(gòu)抽芯動(dòng)作可靠,加工簡(jiǎn)單。
圖2 內(nèi)側(cè)抽芯機(jī)構(gòu)
1.動(dòng)模固定板 2.定位銷釘 3.動(dòng)模型芯 4.定模型芯
5.鎖緊楔塊 6.型芯滑塊 7.定模板 8.彈簧 9.動(dòng)模板
圖3 內(nèi)、外側(cè)同時(shí)抽芯的復(fù)合機(jī)構(gòu)
1.動(dòng)模型芯 2.定位銷釘 3.型芯滑塊 4.定模型芯 5.鎖緊楔塊
6.定模型芯 7.型芯鑲塊 8.彈簧 9.動(dòng)模型芯
3 內(nèi)、外側(cè)同時(shí)抽芯的復(fù)合機(jī)構(gòu)
對(duì)于1模有幾腔不同塑件,而又同時(shí)有內(nèi)、外側(cè)抽芯時(shí),可采用如圖 , 所示的復(fù)合抽芯機(jī)構(gòu),圖3為合模狀態(tài)。鎖緊楔塊5的斜面和型芯滑塊3的斜面配合,起到使型芯復(fù)位和鎖緊的作用。開模時(shí),型芯滑塊3在彈簧8作用下同時(shí)完成內(nèi)、外側(cè)的抽芯動(dòng)作,定位銷釘2起限位作用。為使型芯加工簡(jiǎn)單,維修方便,可將型芯部分做成鑲拼結(jié)構(gòu)。
4 簡(jiǎn)單的彈簧抽芯機(jī)構(gòu)
如圖4所示為一種簡(jiǎn)單的定模彈簧抽芯機(jī)構(gòu)。開模后,A處分型,滾輪6離開滑動(dòng)型芯5,5在彈簧4的作用下完成抽芯動(dòng)作。需要特別指出的是,由于是定模抽芯,故動(dòng)模型芯2需設(shè)計(jì)成延時(shí)開模,以避免拉壞塑件,如果是動(dòng)模抽芯,則將滾輪固定機(jī)構(gòu)放在定模來(lái)完成抽芯動(dòng)作。合模時(shí),滾輪壓迫滑動(dòng)型芯復(fù)位并鎖緊,這種抽芯機(jī)構(gòu)十分簡(jiǎn)單,加工方便,但鎖緊力不大,且需經(jīng)常檢查彈簧的彈性。
圖4 彈簧抽芯機(jī)構(gòu)
1.定模型芯 2.動(dòng)模型芯 3.固定板 4.彈簧
5.滑動(dòng)型芯 6.滾輪 7.動(dòng)模板
5 一種簡(jiǎn)易的內(nèi)置抽芯機(jī)構(gòu)
對(duì)于模具空間位置較小的外側(cè)抽芯,可采用如圖5所示的簡(jiǎn)易抽芯機(jī)構(gòu)。合模時(shí),在定模鑲塊1的作用下,斜滑塊3壓迫彈簧6并復(fù)位,兩個(gè)導(dǎo)向銷釘5起導(dǎo)向作用。開模時(shí)1、7分開,斜滑塊3在彈簧6的作用下,沿導(dǎo)向銷釘5上行完成抽芯。抽芯動(dòng)作瞬間完成,縮短了開模時(shí)間,提高了生產(chǎn)效率。此種抽芯機(jī)構(gòu)經(jīng)適當(dāng)變化也可用于定模抽芯。
圖5 簡(jiǎn)易內(nèi)置抽芯機(jī)構(gòu)
1.定模型芯 2.動(dòng)模型芯 3.斜滑塊 4.彈簧
5.導(dǎo)向銷釘 6.螺釘 7.動(dòng)模板
經(jīng)生產(chǎn)實(shí)踐證明,采用了上述幾種抽芯機(jī)構(gòu)的模具,結(jié)構(gòu)簡(jiǎn)單,動(dòng)作運(yùn)行可靠,維修調(diào)試方便,有效降低了生產(chǎn)成本。
參考文獻(xiàn)
1 馮炳堯等.模具設(shè)計(jì)與制造簡(jiǎn)明手冊(cè).上海:上??茖W(xué)技術(shù)出版社,1985.
2 塑料模具設(shè)計(jì)手冊(cè)編寫組.塑料模具設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社,1982.
翻譯原文二:
Die Life and Die Failure
Proper selection of the de material and of the die manufacturing technique determines, to a large extent, the useful life of forming des. Dies may have to be replaced for a number of reasons, such as changes n dimensions due to wear or plastic deformation, deterioration of the surface finish, breakdown of lubrication, and cracking or breakage. In hot impression die forging, the principal modes of die failure are erosion, thermal fatigue, mechanical fatigue and permanent (plastic) deformation.
In erosion, also commonly called die wear, material is actually removed from the die surface by pressure and sliding of the deforming material, wear resistance of the die material, die surface temperature, relative sliding speed at the die/material interface and the nature of the interface layer are the most significant factors influencing abrasive die wear. Thermal fatigue occurs on the surface of the die impression in hot forming and results in “heat checking”. Thermal fatigue results from cyclic yelling of the de surface due to contact with the hot deforming material. This contact causes the surface layers to expend, and, because of the very steep temperature gradients, the surface layers are subject to compressive stresses. At sufficiently high temperatures, these compressive stresses may cause the surface layers to deform. When the de surface cools, a stress reversal may occur and the surface layers will then be n tension. After repeated cycling in this manner, fatigue will cause formation of a crack pattern that s recognized as heat checking. Die breakage or cracking is due to mechanical fatigue and occurs in cases where the dies are overloaded and local stresses are high. The dies are subject to alternating stresses due to loading and unloading during the deformation process and this causes crack initiation and eventual failure.
Die life and de failure are greatly affected by the mechanical properties of the die materials under the conditions that exist in a given deformation process. Generally, the properties that are most significant depend on the process temperature. Thus, die materials used in cold forming processes are quite different from those used in hot forming.
The design and manufacture of dies and the selection of die materials are very important in the production of discrete parts by use of metal forming processes. The dies must be made by modern manufacturing methods from appropriate die materials in order to provide acceptable die life at a reasonable cost. Often the economy success of a forming process depends on die life and de costs per piece produced. For a given application, selection of the appropriate die material depends on three types of variables:
(a)Variables related to the process itself, including factors such as size of the die cavity, type of machine used and deformation speed, initial stock size and temperature, die temperature to be use, lubrication, production rata and number of parts to be produced.
(b)Variables related to the type of die loading, including speed of loading, i.e. impact of gradual contact time between dies and deforming metal (this contact time is especially important in hot forming), maximum load and pressure on the dies, maximum and minimum die temperatures, and number of loading cycles to which the dies will be subjected.
(c)Mechanical properties of the die material, including harden ability, impact strength, hot strength(if hot forming is considered)and resistance to thermal and mechanical fatigue.
譯文二:
模具的壽命與失效
正確的選擇模具材料和模具的制造技術(shù),在很大程度上決定著成形模具的使用壽命。為著某些原因,模具可能不得不更換。例如,由于磨損或塑性變性而使尺寸發(fā)生改變、表面損壞、光潔度降低、潤(rùn)滑故障和裂紋即破裂。在熱壓模緞中,模具失效的主要模式是腐蝕作用、熱疲勞、機(jī)械疲勞和永久性即塑性變形。
腐蝕,通常也叫做模具磨損,實(shí)際上模具由于受到壓力后模具表面上的材料發(fā)生剝落。變形材料的滑移、模具材料的抗磨性,模具表面溫度、模具和材料接觸表面的相對(duì)滑動(dòng)速度以及接觸層的性質(zhì),都是影響模具磨損的最主要的因素。]
熱成形加工中會(huì)發(fā)生熱裂效應(yīng),熱疲勞都發(fā)生在模具模腔的表面。由于跟熱變形材料接觸,就在周期性屈服的模具表面引起了熱疲勞。由于溫度梯度的急劇變化,這種接觸引起的表面層的膨脹,而且表面層受到壓應(yīng)力的影響。在溫度足夠高的時(shí)刻,這些壓應(yīng)力可引起表面層的破壞。當(dāng)模具表面冷卻時(shí),可發(fā)生反向應(yīng)力,因而表面層將處于拉應(yīng)力狀態(tài)。這種狀態(tài)循環(huán)往復(fù)將引起形成龜裂的模面,那就是作為識(shí)別熱裂紋的特征。
模具破裂或產(chǎn)生裂紋是由于機(jī)械疲勞,并且是在模具過(guò)載和局部應(yīng)力高等情況下發(fā)生的。在變形加工過(guò)程中,由于加載、減載、模具承受交變應(yīng)力作用,這就將引起開裂并發(fā)生重大破壞。
在給定的成形工藝條件下,模具材料的機(jī)械性能對(duì)模具壽命和模具的損壞影響很大。一般而言,最具影響的性能是取決于加工過(guò)程的溫度。這樣,用于冷卻盛開加工工藝的模具材料與用于熱成形加工的材料有著極大的區(qū)別。
對(duì)于金屬成形加工工藝的小批、單件生產(chǎn),模具的設(shè)計(jì)、制造和模具材料的選擇是非常重要的。為著提供成本合理和具有令人滿意的壽命的模具,必須用合適的模具材料和用現(xiàn)代的制造方法來(lái)制造模具。成形加工的經(jīng)濟(jì)效益常常是取決于模具壽命和所制造的每件模具的成本。根據(jù)上述應(yīng)用,合適的模具材料的選擇取決于以下三個(gè)方面的因素:
(a)與加工工藝本身有關(guān)的因素,包括模腔尺寸、所用機(jī)器形式和變形速度,毛坯尺寸和溫度,要用的模具溫度、潤(rùn)滑、生產(chǎn)率和要生產(chǎn)的零件數(shù)量。
(b)與模具加載形式相關(guān)的因素,包括加載速度,即模具與正在變形的金屬之間的沖擊時(shí)間或逐漸接觸的時(shí)間(在熱變形加工中,這種接觸時(shí)間顯得特別重要),在模具上的最大載荷和壓力,最大和最小的模具溫度以及模具將要承受的加載周期的數(shù)目。
(c)模具材料的機(jī)械性能,包括硬度、沖擊強(qiáng)度、熱強(qiáng)度(如果考慮成形加工的話)和機(jī)械疲勞的性能。
- 13-