高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí):第六篇 第2講 等差數(shù)列及其前n項(xiàng)和
《高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí):第六篇 第2講 等差數(shù)列及其前n項(xiàng)和》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)人教A版(理)一輪復(fù)習(xí):第六篇 第2講 等差數(shù)列及其前n項(xiàng)和(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第2講 等差數(shù)列及其前n項(xiàng)和 A級(jí) 基礎(chǔ)演練 (時(shí)間:30分鐘 滿分:55分) 一、選擇題(每小題5分,共20分) 1.(2012·福建)等差數(shù)列{an}中,a1+a5=10,a4=7,則數(shù)列{an}的公差為 ( ). A.1 B.2 C.3 D.4 解析 在等差數(shù)列{an}中,∵a1+a5=10.∴2a3=10,∴a3=5,又a4=7,∴所求公差為2. 答案 B 2.(2013·山東實(shí)驗(yàn)中學(xué)診斷)設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,已知a1+a3+a11=6,那么S9= ( ). A.2 B.8 C.18 D.36 解析 設(shè)等差數(shù)列的公差為d,則由a1+a3+a11=6,可得3a1+12d=6,∴a1+4d=2=a5.∴S9==9a5=9×2=18. 答案 C 3.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則a20等于( ). A.-1 B.1 C.3 D.7 解析 兩式相減,可得3d=-6,d=-2.由已知可得3a3=105,a3=35,所以a20=a3+17d=35+17×(-2)=1. 答案 B 4.(2012·東北三校一模)在等差數(shù)列{an}中,S15>0,S16<0,則使an>0成立的n的最大值為 ( ). A.6 B.7 C.8 D.9 解析 依題意得S15==15a8>0,即a8>0;S16==8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使an>0成立的n的最大值是8,選C. 答案 C 二、填空題(每小題5分,共10分) 5.(2012·江西)設(shè)數(shù)列{an},{bn}都是等差數(shù)列,若a1+b1=7,a3+b3=21,則a5+b5=________. 解析 設(shè)數(shù)列{an},{bn}的公差分別為d1,d2,因?yàn)閍3+b3=(a1+2d1)+(b1+2d2)=(a1+b1)+2(d1+d2)=7+2(d1+d2)=21,所以d1+d2=7,所以a5+b5=(a3+b3)+2(d1+d2)=21+2×7=35. 答案 35 6.(2013·沈陽(yáng)四校聯(lián)考)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-=1,則公差為_(kāi)_______. 解析 依題意得S4=4a1+d=4a1+6d,S3=3a1+d=3a1+3d,于是有-=1,由此解得d=6,即公差為6. 答案 6 三、解答題(共25分) 7.(12分)在等差數(shù)列{an}中,已知a2+a7+a12=12,a2·a7·a12=28,求數(shù)列{an}的通項(xiàng)公式. 解 由a2+a7+a12=12,得a7=4. 又∵a2·a7·a12=28,∴(a7-5d)(a7+5d)·a7=28, ∴16-25d2=7,∴d2=,∴d=或d=-. 當(dāng)d=時(shí),an=a7+(n-7)d=4+(n-7)×=n-; 當(dāng)d=-時(shí),an=a7+(n-7)d=4-(n-7)×=-n+. ∴數(shù)列{an}的通項(xiàng)公式為an=n-或an=-n+. 8.(13分)在等差數(shù)列{an}中,公差d>0,前n項(xiàng)和為Sn,a2·a3=45,a1+a5=18. (1)求數(shù)列{an}的通項(xiàng)公式; (2)令bn=(n∈N*),是否存在一個(gè)非零常數(shù)c,使數(shù)列{bn}也為等差數(shù)列?若存在,求出c的值;若不存在,請(qǐng)說(shuō)明理由. 解 (1)由題設(shè),知{an}是等差數(shù)列,且公差d>0, 則由得 解得∴an=4n-3(n∈N*). (2)由bn===, ∵c≠0,∴可令c=-,得到bn=2n. ∵bn+1-bn=2(n+1)-2n=2(n∈N*), ∴數(shù)列{bn}是公差為2的等差數(shù)列. 即存在一個(gè)非零常數(shù)c=-,使數(shù)列{bn}也為等差數(shù)列. B級(jí) 能力突破(時(shí)間:30分鐘 滿分:45分) 一、選擇題(每小題5分,共10分) 1.(2013·咸陽(yáng)模擬)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n= ( ). A.12 B.14 C.16 D.18 解析 Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14. 答案 B 2.(2012·廣州一模)已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且=,則使得為整數(shù)的正整數(shù)的個(gè)數(shù)是 ( ). A.2 B.3 C.4 D.5 解析 由=得:===,要使為整數(shù),則需=7+為整數(shù),所以n=1,2,3,5,11,共有5個(gè). 答案 D 二、填空題(每小題5分,共10分) 3.(2013·徐州調(diào)研)等差數(shù)列{an}的通項(xiàng)公式是an=2n+1,其前n項(xiàng)和為Sn,則數(shù)列的前10項(xiàng)和為_(kāi)_______. 解析 ∵an=2n+1,∴a1=3, ∴Sn==n2+2n,∴=n+2, ∴是公差為1,首項(xiàng)為3的等差數(shù)列, ∴前10項(xiàng)和為3×10+×1=75. 答案 75 4.(2012·諸城一中月考)設(shè)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,則這個(gè)數(shù)列的中間項(xiàng)是________,項(xiàng)數(shù)是________. 解析 設(shè)等差數(shù)列{an}的項(xiàng)數(shù)為2n+1, S奇=a1+a3+…+a2n+1==(n+1)an+1, S偶=a2+a4+a6+…+a2n==nan+1, ∴==,解得n=3,∴項(xiàng)數(shù)2n+1=7,S奇-S偶=an+1,即a4=44-33=11為所求中間項(xiàng). 答案 11 7 三、解答題(共25分) 5.(12分)在數(shù)列{an}中,a1=8,a4=2,且滿足an+2+an=2an+1. (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)Sn是數(shù)列{|an|}的前n項(xiàng)和,求Sn. 解 (1)由2an+1=an+2+an可得{an}是等差數(shù)列, 且公差d===-2. ∴an=a1+(n-1)d=-2n+10. (2)令an≥0,得n≤5. 即當(dāng)n≤5時(shí),an≥0,n≥6時(shí),an<0. ∴當(dāng)n≤5時(shí),Sn=|a1|+|a2|+…+|an| =a1+a2+…+an=-n2+9n; 當(dāng)n≥6時(shí),Sn=|a1|+|a2|+…+|an| =a1+a2+…+a5-(a6+a7+…+an) =-(a1+a2+…+an)+2(a1+a2+…+a5) =-(-n2+9n)+2×(-52+45) =n2-9n+40, ∴Sn= 6.(13分)(2012·四川)已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2an=S2+Sn對(duì)一切正整數(shù)n都成立. (1)求a1,a2的值; (2)設(shè)a1>0,數(shù)列的前n項(xiàng)和為T(mén)n.當(dāng)n為何值時(shí),Tn最大?并求出Tn的最大值. 解 (1)取n=1,得a2a1=S2+S1=2a1+a2, ① 取n=2,得a=2a1+2a2, ② 由②-①,得a2(a2-a1)=a2, ③ (i)若a2=0,由①知a1=0, (ii)若a2≠0,由③知a2-a1=1. ④ 由①、④解得,a1=+1,a2=2+;或a1=1-,a2=2-. 綜上可得a1=0,a2=0;或a1=+1,a2=+2;或a1=1-,a2=2-. (2)當(dāng)a1>0時(shí),由(1)知a1=+1,a2=+2. 當(dāng)n≥2時(shí),有(2+)an=S2+Sn,(2+)an-1=S2+Sn-1, 所以(1+)an=(2+)an-1,即an=an-1(n≥2), 所以an=a1()n-1=(+1)·()n-1. 令bn=lg, 則bn=1-lg()n-1=1-(n-1)lg 2=lg, 所以數(shù)列{bn}是單調(diào)遞減的等差數(shù)列(公差為-lg 2), 從而b1>b2>…>b7=lg>lg 1=0, 當(dāng)n≥8時(shí),bn≤b8=lg<lg 1=0, 故n=7時(shí),Tn取得最大值,且Tn的最大值為 T7===7-lg 2. 特別提醒:教師配贈(zèng)習(xí)題、課件、視頻、圖片、文檔等各種電子資源見(jiàn)《創(chuàng)新設(shè)計(jì)·高考總復(fù)習(xí)》光盤(pán)中內(nèi)容.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
10 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)人教A版理一輪復(fù)習(xí):第六篇 第2講 等差數(shù)列及其前n項(xiàng)和 高考 學(xué)人 一輪 復(fù)習(xí) 第六 等差數(shù)列 及其
鏈接地址:http://weibangfood.com.cn/p-1374723.html