【溫馨提示】壓縮包內(nèi)含CAD圖有下方大圖片預(yù)覽,下拉即可直觀呈現(xiàn)眼前查看、盡收眼底縱觀。打包內(nèi)容里dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,所見才能所得,請(qǐng)見壓縮包內(nèi)的文件及下方預(yù)覽,請(qǐng)細(xì)心查看有疑問可以咨詢QQ:11970985或197216396
壓縮包內(nèi)含有CAD圖紙和說明書,咨詢Q 197216396 或 11970985
摘 要
新興市場(chǎng)的風(fēng)電能源產(chǎn)業(yè)發(fā)展迅速,在國(guó)家政策的支持和能源供應(yīng)緊張的背景下,中國(guó)的風(fēng)電能源產(chǎn)業(yè)特別是風(fēng)電設(shè)備制造業(yè)迅速崛起,已成為全球風(fēng)電產(chǎn)業(yè)發(fā)展最為活躍的地區(qū)。2006年,全球風(fēng)電發(fā)展所用的資金中有9%投向了中國(guó),總額高達(dá)16.2億歐元。2007年,中國(guó)風(fēng)電裝機(jī)容量已排名世界第五。截止到2012年,中國(guó)風(fēng)電裝機(jī)容量達(dá)到42287MW,躍居世界第一。而從2015年中國(guó)風(fēng)能協(xié)會(huì)公布的數(shù)據(jù)來看,我國(guó)新增風(fēng)電裝機(jī)容量已達(dá)30.5吉瓦,達(dá)到峰值。2016年的發(fā)展趨勢(shì)將趨于平穩(wěn),不再將重點(diǎn)放在數(shù)量,而是轉(zhuǎn)向質(zhì)量的提升。
與水平軸風(fēng)力發(fā)電機(jī)相比,垂直軸風(fēng)力發(fā)電機(jī)具有著成本低,結(jié)構(gòu)簡(jiǎn)單,無噪聲,無需對(duì)風(fēng),啟動(dòng)風(fēng)速低等諸多優(yōu)點(diǎn)。因此,在目前的經(jīng)濟(jì)市場(chǎng)上,垂直軸風(fēng)力發(fā)電機(jī)更受歡迎,應(yīng)用前景也更加廣闊。
本課題針對(duì)市場(chǎng)現(xiàn)有的垂直軸風(fēng)機(jī)葉片特有機(jī)構(gòu)進(jìn)行改良,以做到在不影響葉片自身轉(zhuǎn)動(dòng)的同時(shí),保護(hù)葉片,并達(dá)到提高利用率的目的。
關(guān)鍵詞:風(fēng)力發(fā)電,垂直軸風(fēng)機(jī),翼型件
壓縮包內(nèi)含有CAD圖紙和說明書,咨詢Q 197216396 或 11970985
Abstract
The present invention concerns a wind turbine having a plurality of vertically extending airfoils forming a rotating carousel rotating about a central axis thereof.The airfoils pivot about their leading edges to adjust the pitch angle thereof to maximize energy harvest when the airfoils are rotating both in an upwind direction and a down wind direction .This pivoting movement results from trailing edges of the airfoils being pivot-ally secured to rigid spokes or cables of a trailing edge hub.An adjustment mechanism is pivot-ally mounted between a carousel hub and the trailing edge hub and is used to control the separation between a central axis of the trailing edge hub and the axis of rotation of the carousel as they co-rotate.As the carousel rotates,the offset distance between the two axes determines the maximum achievable pitch angle of each airfoil.The airfoils then continually cycle between a positive and negative value of the maximum pitch angle relative to its position around the carousel and relative to the existing wind direction in order to create maximum lift.A wind direction rudder is secured to the adjustment mechanism to provide for movement thereof resulting in movement of the trailing edge hub as wind direction changes so that the most desirable pitch angle of the airfoils relative to wind direction is maintained.
Key words: wind energy,wind turbine,trailing edge hub.
目 錄
摘 要 II
Abstract III
1 緒 論 1
1.1風(fēng)能發(fā)展現(xiàn)狀 1
1.2課題涉及領(lǐng)域 1
1.3課題設(shè)計(jì)背景 2
2 垂直軸風(fēng)機(jī)各部件綜述 3
2.1 垂直軸風(fēng)機(jī)翼型件 3
2.2 垂直軸風(fēng)機(jī)螺桿電機(jī)機(jī)構(gòu) 3
2.3 垂直軸風(fēng)機(jī)電子控制機(jī)構(gòu) 4
3 垂直軸風(fēng)機(jī)葉片選擇 5
3.1 風(fēng)機(jī)葉片數(shù)目及葉形 5
3.2 垂直軸風(fēng)機(jī)發(fā)電效率 5
4 設(shè)計(jì)圖詳述 8
4.1 三維圖,俯視圖 8
4.2 輪轂部分剖面圖、各狀態(tài)下翼型件位置示意圖 9
4.3 電子控制示意圖 12
5 結(jié)論 14
參考文獻(xiàn) 15
致 謝 16
XIII
壓縮包內(nèi)含有CAD圖紙和說明書,咨詢Q 197216396 或 11970985
1 緒 論
本設(shè)計(jì)所涉及的是一個(gè)具有多個(gè)成型的旋轉(zhuǎn)圓盤傳送帶圍繞其中心軸線垂直延伸的翼型件的風(fēng)力發(fā)電機(jī),簡(jiǎn)稱垂直軸風(fēng)力發(fā)電機(jī)。設(shè)計(jì)的主要目的是建立一個(gè)垂直軸風(fēng)力發(fā)電機(jī)葉片的變偏角機(jī)構(gòu),以保證在滿足葉片自身偏轉(zhuǎn)的要求同時(shí)控制旋轉(zhuǎn)角度防止葉片受損。同時(shí)風(fēng)力發(fā)電機(jī)的前緣翼件型樞軸在調(diào)整俯仰角時(shí)不管是在逆風(fēng)向還是順風(fēng)向上下旋轉(zhuǎn)時(shí)都能獲得最大化的能量[1]。
這種旋轉(zhuǎn)運(yùn)動(dòng)是由于翼型件后緣被可樞轉(zhuǎn)地固定到剛性的輻條或后沿輪轂的電纜所導(dǎo)致的。而整個(gè)系統(tǒng)內(nèi)的調(diào)整機(jī)構(gòu)則被可樞轉(zhuǎn)的安裝在圓盤傳送帶轂和后緣輪轂之間,并用來控制后緣輪轂的中心軸和共同旋轉(zhuǎn)的圓盤傳送帶的旋轉(zhuǎn)軸線之間的距離。隨著轉(zhuǎn)盤的轉(zhuǎn)動(dòng),中心軸與旋轉(zhuǎn)軸之間的偏移距離決定了每個(gè)翼型的最大可實(shí)現(xiàn)槳距角[2]。之后,翼型件繼續(xù)根據(jù)其周圍的轉(zhuǎn)盤位置的最大槳距角的正負(fù)值以及所受風(fēng)向的循環(huán)影響來制造最大的升力。為了使得翼型件相對(duì)于風(fēng)向的最大可實(shí)現(xiàn)槳距角保持不變,風(fēng)向舵就需要被固定在調(diào)節(jié)機(jī)構(gòu),只有它們移動(dòng),才能保證后緣輪轂在風(fēng)向變化時(shí)產(chǎn)生運(yùn)動(dòng).
1.1風(fēng)力發(fā)電發(fā)展現(xiàn)狀
2002年,中國(guó)率先開始了新型垂直軸風(fēng)力發(fā)電機(jī)的研究,由部隊(duì)通訊部牽頭,上海某公司為研發(fā)主體,西安電子科技大學(xué),西安交大,同濟(jì)大學(xué),復(fù)旦大學(xué)等高校的多位專家配合,在短短一年時(shí)間里就產(chǎn)生了首臺(tái)新型垂直軸風(fēng)力發(fā)電機(jī)。并在不到5年的時(shí)間里將功率擴(kuò)展至200W-100KW,處于世界領(lǐng)先地位。按照我國(guó)“十二五”規(guī)劃目標(biāo),預(yù)計(jì)到2015年風(fēng)力發(fā)電機(jī)容量將達(dá)到1*KW,年發(fā)電量1900*KW.h[3]。GWEC和Greenpeace預(yù)測(cè),今后20年風(fēng)力發(fā)電將成為世界主力電源,2030年裝機(jī)容量有可能達(dá)28 *KW,可供應(yīng)世界電力需求的22%。
1.2課題涉及領(lǐng)域
本課題所涉及的是一種風(fēng)能能量產(chǎn)生裝置,主要是縱軸翼型風(fēng)力發(fā)電裝置。
1.3課題設(shè)計(jì)背景
風(fēng)力發(fā)電機(jī)在風(fēng)能能量產(chǎn)生裝置中屬于非常重要的一大類。根據(jù)其旋轉(zhuǎn)軸可分為兩個(gè)類別。一種是垂直軸風(fēng)力發(fā)電機(jī):一般是圍繞一條垂直軸線具有多個(gè)翼型件(葉片):另一種是水平軸風(fēng)力發(fā)電機(jī):一般圍繞水平軸線具有翼型件(葉片)??傮w而言,不論是垂直軸還是水平軸都有自己不同的優(yōu)缺點(diǎn)[4]。從目前來看,對(duì)于一個(gè)給定的風(fēng)力流動(dòng),水平軸風(fēng)力發(fā)電機(jī)提取電能的能力更加高效。例如,商用主流發(fā)電組就適合使用水平軸風(fēng)力發(fā)電機(jī)。為了實(shí)現(xiàn)高效操作,水平軸風(fēng)力發(fā)電機(jī)往往需要安裝在高塔上,并且它的葉片及其上面所產(chǎn)生的空氣障礙物會(huì)造成振蕩,阻礙其性能。同時(shí),水平軸風(fēng)力發(fā)電機(jī)通常只能有兩到三個(gè)處于遠(yuǎn)高于事故風(fēng)速的高速旋轉(zhuǎn)的螺旋槳,存在極大的不穩(wěn)定性。旋轉(zhuǎn)軸還通常耦合有發(fā)電機(jī)和齒輪箱,這兩樣物品也需要一起安裝到塔上,這就大大增加了安裝和后期維保的難度。水平軸風(fēng)力發(fā)電機(jī)還存在的一個(gè)問題就是,它的螺旋槳為了能夠更有效地吸收席卷整個(gè)盤孔的大部分風(fēng)能,經(jīng)常是采用在風(fēng)吹過時(shí)能夠改變螺距的刀片作為葉片,并且只有當(dāng)感知到最小風(fēng)速的時(shí)候水平軸風(fēng)力發(fā)電機(jī)才可以按要求發(fā)起供電協(xié)助以啟動(dòng)旋轉(zhuǎn)運(yùn)動(dòng)。相反的,垂直軸風(fēng)力發(fā)電機(jī)可以允許多個(gè)單片葉片在低風(fēng)速的時(shí)候進(jìn)行操作并且不要求必須要面對(duì)風(fēng)向時(shí)才可以進(jìn)行旋轉(zhuǎn),任何風(fēng)向都可以產(chǎn)生旋轉(zhuǎn)運(yùn)動(dòng)。這種可以從任意風(fēng)向較低風(fēng)速立即啟動(dòng)工作的能力使得垂直軸風(fēng)力發(fā)電機(jī)非常適合小型低地面的設(shè)施,相較于水平軸風(fēng)機(jī),節(jié)約了建造高塔架的成本,并降低了維修或更換各個(gè)發(fā)電機(jī)部件的難度。在平均風(fēng)速較低的地區(qū),垂直軸風(fēng)機(jī)提供了一種可替換的低成本風(fēng)力發(fā)電的可能性。
桶形的垂直軸風(fēng)機(jī)的葉片只有在其翼型件旋轉(zhuǎn)一半的時(shí)候和回轉(zhuǎn)期間與風(fēng)向相反做出運(yùn)動(dòng)時(shí)才能產(chǎn)生能量[5]。因此,這種類型的垂直軸風(fēng)機(jī)不能以比風(fēng)速大的速度進(jìn)行旋轉(zhuǎn),這就嚴(yán)重的限制了它們獲取更大能量的能力。
一個(gè)Darrieus(達(dá)里厄)式或稱為“打蛋器”式的垂直軸風(fēng)力發(fā)電機(jī)是可以實(shí)現(xiàn)在兩個(gè)方向產(chǎn)生功率的,但事實(shí)卻是,它們經(jīng)常需要協(xié)助才能開始進(jìn)行旋轉(zhuǎn)。
我們所要提到的第三種垂直軸風(fēng)機(jī)是被稱為Giromill型風(fēng)機(jī),該種風(fēng)機(jī)是通過翼型件圍繞軸的完整旋轉(zhuǎn)來提供動(dòng)力。在這種類型中葉片通常會(huì)被設(shè)計(jì)成能夠提供足夠扭矩的形態(tài),以保證發(fā)電機(jī)在0轉(zhuǎn)速時(shí)能夠做到自啟動(dòng),但由于其固有的大量處于峰值的阻力的存在,速度也受到了限制。在某些翼型設(shè)計(jì)中方向可以在啟動(dòng)時(shí)被最大化,然后調(diào)節(jié)為高速運(yùn)轉(zhuǎn)。它也被作為循環(huán)或改變當(dāng)葉片旋轉(zhuǎn)時(shí)對(duì)風(fēng)向的角度來獲取風(fēng)能的一種途徑。然而,這其中存在這一個(gè)很重要的問題,即成本。該類風(fēng)機(jī)的復(fù)雜性導(dǎo)致了維修量的增加和發(fā)電效率的降低,成本大大增加。因此,對(duì)于翼型的調(diào)整在所難免。在實(shí)際的生產(chǎn)生活中,人們都希望可以創(chuàng)造出一種可以通過調(diào)整翼型來達(dá)到獲取風(fēng)能最大化的使用簡(jiǎn)單、成本低廉、操作可靠的垂直軸風(fēng)力發(fā)電機(jī)[6]。
14
第2章 垂直軸風(fēng)機(jī)各部件綜述
2 垂直軸風(fēng)機(jī)各部件綜述
2.1 葉片框架三維立體圖
2.1 垂直軸風(fēng)機(jī)翼型件
本課題設(shè)計(jì)是屬于垂直軸類型發(fā)電機(jī),是一種提供了可調(diào)節(jié)翼型方向的操作簡(jiǎn)化而結(jié)構(gòu)緊湊的機(jī)構(gòu)。這其中包含有多個(gè)垂直延伸的較厚前緣部分和輕薄的后緣部分,每個(gè)翼型和與其對(duì)稱的翼型都被固定在靠近底部前緣從下方中心輪轂伸展出的一條臂上。其頂端被地固定在相同的前緣從上端部中心輪轂延伸出來的一條臂上。中心垂直延伸的驅(qū)動(dòng)軸被固定在底部,并形成一個(gè)由上下輻條臂組成的旋轉(zhuǎn)型翼盤的頂部中心。中央驅(qū)動(dòng)軸的下端是一種基本的支撐結(jié)構(gòu),是用于驅(qū)動(dòng)裝置的連接,例如,發(fā)電機(jī),制冷壓縮機(jī),流體泵等等[7]。
翼型的后緣被固定在每個(gè)靠近后緣的翼型件頂端。而后緣的相對(duì)端則被固定在后緣角度調(diào)整轂上。后緣輪轂覆蓋在上部輻條臂上,其中的翼型件角度調(diào)節(jié)機(jī)構(gòu)固定在兩者之間。
翼型件角度調(diào)節(jié)機(jī)構(gòu)包括有一個(gè)用于定位的沿螺紋載體旋轉(zhuǎn)的螺紋軸電操作螺絲機(jī)構(gòu),一個(gè)通過后緣槳距角調(diào)節(jié)機(jī)構(gòu)調(diào)節(jié)和中心控制的中心輪轂,一個(gè)固定在調(diào)整軸上的風(fēng)力葉片或舵。
2.2 垂直軸風(fēng)機(jī)螺桿電機(jī)機(jī)構(gòu)
當(dāng)螺桿電機(jī)機(jī)構(gòu)處于零位置時(shí),后緣傾斜角調(diào)整輪轂與兩線上下部前緣輪轂共同延伸出的軸線繞同一中心軸旋轉(zhuǎn)。這一部分設(shè)計(jì)是為了使得這個(gè)零件的翼型件線性延伸與切線平行于旋轉(zhuǎn)圓。此時(shí)翼型件具有零槳距角。當(dāng)螺桿電機(jī)機(jī)構(gòu)的操作由此中心軸以距離D分離并移動(dòng)到相對(duì)于上述中前緣傾斜角控制集線器及其相關(guān)聯(lián)的后緣輻條臂時(shí),此次通過俯仰角相對(duì)于零位置γ切線位置的移動(dòng)導(dǎo)致了翼型件后緣的運(yùn)動(dòng)。如果前緣連接點(diǎn)的中心軸與輪輻臂之間的距離被定為C的話,則其所得到的傾斜角就具有最大值且最大值等于D/C的反正弦[8]。
在操作中,我們也需要了解到調(diào)節(jié)機(jī)構(gòu)可以憑借安裝方法保持相對(duì)靜止,并可以與在特定時(shí)間所產(chǎn)生的風(fēng)向下保持相對(duì)靜止的舵進(jìn)行連接。同時(shí)也可以理解的是,由于后緣中心輻射結(jié)構(gòu)基本上是剛性的,翼型件之間隔開180°,即,在彼此相對(duì)的兩側(cè),將具有相反的γ角度。因此,在任意一個(gè)旋轉(zhuǎn)過程中,在旋轉(zhuǎn)機(jī)構(gòu)前半部分的翼型件將具有正γ值而后半部分翼型件將具有負(fù)γ值。角度θ用于描述在360°翼型轉(zhuǎn)盤的旋轉(zhuǎn)過程中,以0°為點(diǎn)直面風(fēng)向的弧旋轉(zhuǎn)的角度。處在0°θ角的翼型具有最大的γ角,也就是說,當(dāng)翼型處于180°θ角時(shí),它的γ角度為負(fù)值。舵作為改變風(fēng)向的機(jī)構(gòu),它將會(huì)相應(yīng)的移動(dòng)之前所講的調(diào)整機(jī)構(gòu)與翼型旋轉(zhuǎn)有關(guān)的后緣調(diào)節(jié)中樞。這種運(yùn)動(dòng)的目的是確保0°θ角度位置能夠一直面對(duì)翼型件轉(zhuǎn)動(dòng)后緣輪轂的中心軸的偏心定位,使得翼型件可以在正負(fù)γ角之間來回?cái)[動(dòng)。
從任意一項(xiàng)翼型件后緣部分的運(yùn)動(dòng)都可以看出在處于180°θ角時(shí)該運(yùn)動(dòng)可表達(dá)為一個(gè)正余弦函數(shù),其中γ角的值從θ角為0時(shí)的最高值逐漸減小到θ角為90°時(shí)的最低值,則當(dāng)θ角為180°時(shí),γ角值達(dá)到最大負(fù)值,而當(dāng)θ角變?yōu)?70°時(shí),γ角度返回變?yōu)樽畲笾?。這整一個(gè)過程代表著完成了一個(gè)旋轉(zhuǎn),最后回到θ角0°的狀態(tài)。
螺桿電機(jī)機(jī)構(gòu)可以被理解為用于調(diào)節(jié)后緣傾斜角調(diào)整轂與轉(zhuǎn)盤中心距離的一個(gè)機(jī)構(gòu),同時(shí)還能用于調(diào)節(jié)γ角的大小。這種能力是設(shè)計(jì)本課題的最大性能的關(guān)鍵。當(dāng)啟動(dòng)螺桿電機(jī)機(jī)構(gòu)時(shí),我們需要注意的是,一個(gè)正的大γ角度目的是產(chǎn)生空氣阻力,由此才有足夠的扭矩來對(duì)翼型件施加力產(chǎn)生旋轉(zhuǎn)運(yùn)動(dòng),尤其是遇到低風(fēng)速狀態(tài)時(shí)。因此,一旦具有了足夠的轉(zhuǎn)速,γ角就可以進(jìn)行減小,以此來減少阻力增加轉(zhuǎn)速[9]。
2.2螺桿電機(jī)機(jī)構(gòu)
2.3 垂直軸風(fēng)機(jī)電子控制機(jī)構(gòu)
當(dāng)電子控制機(jī)構(gòu)被連接到螺桿電機(jī)機(jī)構(gòu)時(shí),風(fēng)速和轉(zhuǎn)盤轉(zhuǎn)速將起到調(diào)整γ角度的作用。在電子控制和螺桿電機(jī)兩個(gè)機(jī)構(gòu)中,優(yōu)選方案所選用的電池都將會(huì)是具有可再充性能的電池儲(chǔ)備,例如太陽能電池。
本課題設(shè)計(jì)完善了一部分現(xiàn)有技術(shù)的不足之處。比如,處于后緣調(diào)整轂和上部傳送帶或前緣輪轂之間的調(diào)整機(jī)構(gòu)就可以保護(hù)這些部件免受不利天氣條件影響。此外,舵與調(diào)整軸之間的特殊連接方法也提供了一個(gè)垂直而緊湊的機(jī)制,比普通機(jī)構(gòu)更加堅(jiān)固耐用。
2.3電子控制示意圖
第3章 垂直軸風(fēng)機(jī)葉片選擇
3垂直軸風(fēng)機(jī)葉片選擇
3.1 風(fēng)機(jī)葉片數(shù)目及葉形
3.1.1風(fēng)機(jī)葉片數(shù)目
目前市場(chǎng)上大多數(shù)風(fēng)機(jī)葉片數(shù)目為2~4片,從簡(jiǎn)單的高中物理來分析的話,在不計(jì)摩擦的情況下,葉片的轉(zhuǎn)動(dòng)其實(shí)就是一個(gè)風(fēng)能轉(zhuǎn)化為動(dòng)能和勢(shì)能,然后再由勢(shì)能和動(dòng)能轉(zhuǎn)化為電能的過程。接下來就從不同數(shù)目來分析到底多少片最適合垂直軸風(fēng)機(jī)。
兩葉式:風(fēng)力吹動(dòng)之后,葉片旋轉(zhuǎn)無法連續(xù),在第一個(gè)葉片轉(zhuǎn)動(dòng)時(shí),第二個(gè)葉片無法及時(shí)跟著轉(zhuǎn)動(dòng),會(huì)產(chǎn)生較大的阻力。導(dǎo)致風(fēng)機(jī)無法較好的轉(zhuǎn)動(dòng),發(fā)電功率較低。
三葉式:各葉片間夾角為120°,在第一個(gè)葉片轉(zhuǎn)動(dòng)時(shí),風(fēng)向與葉片垂直帶動(dòng)旋轉(zhuǎn),此時(shí)作用最大;而當(dāng)風(fēng)向與葉片呈60°角時(shí),葉片運(yùn)動(dòng)方向與風(fēng)運(yùn)動(dòng)方向逐漸一致時(shí),作用力逐漸減小。但隨著第一個(gè)葉片角度逐漸增大,第二個(gè)葉片也隨著角度變化逐步啟動(dòng)。以此類推,三個(gè)葉片互相帶動(dòng)[10]。
四葉式:各葉片夾角為90°,當(dāng)?shù)谝粋€(gè)葉片啟動(dòng)并呈90°時(shí),第二個(gè)葉片角度程為0°。由于風(fēng)吹動(dòng)的不確定性,如果在第二個(gè)葉片啟動(dòng)之前產(chǎn)生風(fēng)力停滯,那么不僅不能產(chǎn)生電能,還會(huì)對(duì)裝置產(chǎn)生損耗。
綜上所述,三葉式是風(fēng)能利用率最高的風(fēng)機(jī)種類。
3.1.2 風(fēng)機(jī)葉片葉形
本課題所設(shè)計(jì)的垂直軸風(fēng)機(jī)可以采用多種葉形,以下將對(duì)三種考慮到的葉形進(jìn)行分析,通過圖片直觀的來展示翼型的幾何形狀。
1. 對(duì)稱翼型(優(yōu)選):能夠提供良好的升降能力和相對(duì)較小的失速區(qū)域。
2. 扁平翼型:可以使用但與對(duì)稱翼型相比不夠有效。
3. 單面弧翼型:有效但造價(jià)昂貴且在運(yùn)轉(zhuǎn)過程中所受阻力更大。
3.1.2葉形示意圖
3.2 垂直軸風(fēng)機(jī)發(fā)電效率
3.2.1風(fēng)機(jī)發(fā)電效率計(jì)算
風(fēng)機(jī)發(fā)電效率的計(jì)算公式:
1 風(fēng)機(jī)的輸入功率
當(dāng)空氣流吹過風(fēng)輪掃面A時(shí),其質(zhì)量流量為,每秒所攜帶的能量為:,其中ρ為空氣密度,,通常因風(fēng)速較低而視為不可壓縮流體;v為風(fēng)速,m/s;A為旋轉(zhuǎn)直徑D與高度H的乘積[11]。
2 風(fēng)機(jī)的輸出功率
風(fēng)能發(fā)電為間斷發(fā)電,實(shí)際應(yīng)用中一般將風(fēng)機(jī)所發(fā)的電存儲(chǔ)到蓄電池再使用,這個(gè)過程中必須經(jīng)過整流、濾波、升壓、穩(wěn)壓等過程,電能轉(zhuǎn)換效率進(jìn)一步下降。將該過程簡(jiǎn)化后可得公式為,其中R為負(fù)載的電阻值;U為負(fù)載兩端的電壓;I為流過負(fù)載的電流大?。沪諡殡妷号c電流的功率因素角[12]。
3.2發(fā)電機(jī)效率實(shí)驗(yàn)
第4章 設(shè)計(jì)圖詳述
4 設(shè)計(jì)圖詳述
4.1整體機(jī)構(gòu)分析圖
如圖4.1,4.2中所示垂直軸風(fēng)機(jī)由標(biāo)號(hào)指明。風(fēng)力機(jī)由多個(gè)具有前緣部位和后緣部位的垂直延伸翼型件組成。而翼型件的前緣部分則通過下端連接的延伸臂與中心樞軸相連。相對(duì)的,翼型件上端由另一延伸臂可轉(zhuǎn)動(dòng)地連接于中心輪轂的頂部。這部分細(xì)節(jié)可以在圖4.3中詳細(xì)觀察到,每個(gè)上端臂都有一個(gè)用于插入翼型件啟動(dòng)樞軸的孔,上端臂與翼型件延伸翼面之間還有一個(gè)用于連接的銷。除此之外,每個(gè)翼型件還有一個(gè)彈簧復(fù)位機(jī)構(gòu),包含有一個(gè)連接上端臂和翼型件在銷左右延伸的彈簧。
圖4.1中,中心樞軸的驅(qū)動(dòng)軸由上下兩個(gè)樞紐固定并在中間形成一個(gè)翼型件旋轉(zhuǎn)機(jī)構(gòu)。中心樞軸的下端提供了通過皮帶和輪滑系統(tǒng)連接的驅(qū)動(dòng)裝置,(例如,發(fā)電機(jī),制冷壓縮機(jī),流體泵極其他類似物。)以及一個(gè)底部支撐結(jié)構(gòu)。當(dāng)然,這個(gè)驅(qū)動(dòng)裝置也可以直接連接到中心樞軸,與其中一個(gè)電樞或工作軸一起共同旋轉(zhuǎn)。
每個(gè)翼型件的后緣部分槳距角調(diào)整臂都固定在翼型件上端靠近后緣部分或者銷上而另一端則固定于后緣傾斜角調(diào)整中心轂。再次參考圖4.3長(zhǎng)C由大銷與小銷之間沿平分線BL之間的距離決定。后緣傾斜角調(diào)整中心轂與上端臂輪轂由螺旋調(diào)節(jié)機(jī)構(gòu)定位。
4.1整體三維圖
4.2整體俯視圖
·
4.3翼型件上端
4.2部件剖視解析
在圖4.4中能詳細(xì)展示出后緣傾斜角調(diào)整中心轂限定的內(nèi)部容納區(qū)就是螺旋調(diào)節(jié)機(jī)構(gòu)所在的位置。具體位置則是被固定于分隔器轂盤的一個(gè)薄平板上方。分隔器轂盤則是被后緣傾斜角調(diào)整中心轂固定并一起旋轉(zhuǎn)。調(diào)整機(jī)構(gòu)包括了用于固定薄平板的旋轉(zhuǎn)螺紋軸以及用于定位的螺紋螺母載體和電操作驅(qū)動(dòng)電動(dòng)機(jī)。而后緣傾斜角調(diào)整中心轂則由一根小軸固定在載體上。圖4.4右半部分涉及到的另一個(gè)部分,則是整個(gè)機(jī)構(gòu)的舵。首先,舵的整體被一根臂連接到載體中向上延伸的那根小軸上。電子控制裝置是用于調(diào)節(jié)機(jī)構(gòu)的操作使用,同時(shí)該控制裝置由電池供能。電池是固定在薄平板上,并通過一根導(dǎo)線定位在舵,和通過固定在舵上的光伏太陽能電池充電。舵臂通過傳感器系統(tǒng)固定于電子控制裝置,傳感系統(tǒng)主要是使用無線傳輸?shù)姆绞絹硖峁┬D(zhuǎn)速度和負(fù)荷所需的信息。風(fēng)速計(jì)則同樣使用無線傳輸?shù)姆绞絹斫o控制裝置提供相關(guān)信息。
當(dāng)調(diào)整機(jī)構(gòu)是在一個(gè)零點(diǎn)位置時(shí),中心軸周圍的后緣槳距角調(diào)整轂與兩個(gè)共線的上和下前緣臂轂的軸旋轉(zhuǎn)產(chǎn)生的圓延伸出的線處于于同一軸線上。為了更好理解前一句話,可以參照?qǐng)D4.5理解,本設(shè)計(jì)在此被設(shè)計(jì)成處于零位置時(shí)翼型件的傾斜角為0的狀態(tài),由翼型件線性延伸出的線條與線平行相切并據(jù)此限定圓的大小。
參照?qǐng)D4.4和圖4.6,操作螺絲調(diào)整機(jī)構(gòu)時(shí)可以使后緣槳距角調(diào)整中心轂和與其相關(guān)聯(lián)的后緣傾斜角調(diào)整臂,較高中心樞紐發(fā)生位置上的變化。其中,中心軸是以距離D相隔開的。翼型件旋轉(zhuǎn)機(jī)構(gòu)的旋轉(zhuǎn)將導(dǎo)致繞中心軸旋轉(zhuǎn)的翼型件前緣部分的運(yùn)動(dòng)軌跡形成一個(gè)半徑為C1的圓,而翼型件后緣的運(yùn)動(dòng)軌跡則將形成一個(gè)半徑為C2的圓??梢岳斫獾氖?,當(dāng)翼型件旋轉(zhuǎn)機(jī)構(gòu)旋轉(zhuǎn)時(shí)圓C1與圓C2發(fā)生偏移時(shí)將導(dǎo)致翼型件后緣部分跟隨旋轉(zhuǎn)機(jī)構(gòu)向內(nèi)向外的轉(zhuǎn)動(dòng)發(fā)生位置上的移動(dòng)并從而引發(fā)前緣部分的轉(zhuǎn)動(dòng)。
后緣部分的移動(dòng)可以用傾斜角γ表示,可以寫作γ,大小與L1和圓C1相切時(shí)的距離有關(guān)。γ角的最大值()由現(xiàn)有的軸向間距D決定。在本設(shè)計(jì)中螺絲調(diào)整機(jī)構(gòu)可以提供一個(gè)很大范圍的γ角值范圍,優(yōu)選范圍是從正γ角90°到負(fù)γ角6°。因而,我們可以理解圖6中的指的是γ角達(dá)到一個(gè)相對(duì)特別的偏移距離時(shí)產(chǎn)生的角度值,如通過螺絲調(diào)整機(jī)構(gòu)達(dá)到最大γ值。旋轉(zhuǎn)機(jī)構(gòu)每完成一次完整的旋轉(zhuǎn)過程,翼型件都將旋轉(zhuǎn)360°,用θ角表示翼型件旋轉(zhuǎn)角度。而圖6展現(xiàn)的就是θ角為零即零位置時(shí)翼型件的狀態(tài),與圓C1半徑相交的點(diǎn)直面風(fēng)向,風(fēng)向由箭頭表示。
在操作中,螺絲調(diào)整機(jī)構(gòu)相對(duì)靜止的保持在后緣槳距角調(diào)整中心轂與較高的中心樞紐之間并與向上延伸軸連接,其位置安裝的關(guān)鍵在于特定時(shí)間的風(fēng)向。當(dāng)風(fēng)向出現(xiàn)變化時(shí)舵將帶動(dòng)螺絲調(diào)整機(jī)構(gòu)和后緣槳距角調(diào)整中心轂進(jìn)行移動(dòng)。這一移動(dòng)的目的是為了保證零θ角的位置能時(shí)刻面對(duì)風(fēng)。因此,當(dāng)翼型件θ角從0°到90°轉(zhuǎn)變時(shí),γ角的值從最大值逐漸減小到零。隨著翼型件θ角再逐漸增大到180°時(shí),后緣部分將完全移動(dòng)到相反位置,此時(shí)γ角處于最大負(fù)值。當(dāng)θ角增加至270°時(shí),后緣部分產(chǎn)生的γ角度又逐漸從最大負(fù)值回復(fù)到零。一個(gè)完整旋轉(zhuǎn)過程結(jié)束θ角重新變?yōu)榱銜r(shí),后緣部分γ角重新達(dá)到最大值。之后的旋轉(zhuǎn)過程中,θ角與γ角的值將不斷重復(fù)這一過程。翼型件旋轉(zhuǎn)過程中,后緣槳距角調(diào)整中心轂導(dǎo)致翼型件在正負(fù)γ角之間來回?fù)u擺。從任意一個(gè)翼型件的后緣部分我們都能看出,角度的變化所表示的是一個(gè)余弦波函數(shù)。其中γ角從θ角0°時(shí)的最大值逐漸減小到θ角90°時(shí)的0值,緊接著θ角180°時(shí)γ角變?yōu)樨?fù)值,隨著θ角增大為270°γ值也重回0°,最后完成一個(gè)完整的旋轉(zhuǎn)過程的最后階段,θ角變?yōu)?°,γ值再次達(dá)到最大峰值。翼型件后緣部分不斷交替位置的目的,是為了他們圍繞旋轉(zhuǎn)機(jī)構(gòu)順風(fēng)和逆風(fēng)的各半部分能夠?qū)崿F(xiàn)最大空氣動(dòng)力升力,從而取得現(xiàn)有風(fēng)能資源的最大功率。
圖4.7中可以看出,螺絲調(diào)節(jié)機(jī)構(gòu)改變了垂直中心軸和向上延伸軸的相對(duì)位置,在這其中用-D來表示,這是為了提供當(dāng)θ角度為0時(shí)產(chǎn)生一個(gè)負(fù)的γ角度值。在某些高速風(fēng)值的情況下會(huì)產(chǎn)生一些小的負(fù)γ角。
圖4.8展示的是γ角為90°時(shí)翼型件的狀態(tài)。略小于90°的γ角可以確保后緣傾斜角調(diào)整臂能輕松并可靠地返回到一個(gè)較小的γ角,即,不超過90°就可以使得翼型件不會(huì)處于相反得方向以避免與上端臂之間產(chǎn)生干擾。最大γ角使垂直中心軸與后緣傾斜角調(diào)整臂臂之間產(chǎn)生了一個(gè)特定距離表示為D,其函數(shù)及弦長(zhǎng)C可見圖3。γ角最大值等于D/C的反正弦。在實(shí)例中,翼型件的長(zhǎng)度為1.2米,二等分線(BL)長(zhǎng)度為0.15米,弦長(zhǎng)C為0.1米。螺絲調(diào)整機(jī)構(gòu)具有能將從零位置起算的正0.91米距離D轉(zhuǎn)變?yōu)樾∝?fù)值距離D的能力。負(fù)距離值D提供了與圖7相關(guān)的負(fù)6°γ角狀態(tài)。
翼型件前緣上的銷位置一般定在整個(gè)翼型件重心稍前的位置或是中心。這就提供了翼型件后緣部分向外定向運(yùn)動(dòng)的合適G載荷。因此,后緣部分上的銷最適宜放置的位置是二等分線(BL)靠近尾端的四分之一處,前緣部分的銷則應(yīng)放置在二等分線(BL)靠近前段的四分之一處。從圖可得,上端臂與后緣傾斜角調(diào)整臂都包含有電纜,棒,渠道庫存并通過這些來影響翼型件的定位與移動(dòng)。其中,使用G載荷的電纜對(duì)于保持拉緊狀態(tài)很有效果。圖3中的彈簧調(diào)節(jié)機(jī)構(gòu)是用來保證提供服務(wù)所需的壓力,同時(shí)為后緣部分提供正確位置。
4.4中心輪轂剖視圖
4.5零位置翼型件狀態(tài)
4.6軸正偏移狀態(tài)
4.7負(fù)γ角狀態(tài)
4.8安全停止?fàn)顟B(tài)
4.3 電子控制示意圖
參照?qǐng)D4.9可知,電子控制機(jī)構(gòu)1接收來自傳感器系統(tǒng)2的信息,傳感器信息包括轉(zhuǎn)盤旋轉(zhuǎn)傳感器3以及負(fù)載傳感器4的輸入。電子控制機(jī)構(gòu)還從風(fēng)速傳感器5中接受信息,例如風(fēng)速計(jì)。所有信息的傳送都采用無線傳輸?shù)姆绞???刂茩C(jī)構(gòu)通過螺絲調(diào)節(jié)機(jī)構(gòu)來調(diào)整偏移距離D和γ角度值??刂茩C(jī)構(gòu)和調(diào)節(jié)機(jī)構(gòu)均由電池8供電,而電池則由太陽能板9管理??刂茩C(jī)構(gòu)1和傳感系統(tǒng)2都用于制動(dòng)機(jī)構(gòu)7以控制旋轉(zhuǎn)機(jī)構(gòu)的減緩或停止。
通過旋轉(zhuǎn)機(jī)構(gòu)的旋轉(zhuǎn)速度,當(dāng)前風(fēng)速,驅(qū)動(dòng)裝置上的負(fù)載等數(shù)據(jù)可以得出控制機(jī)構(gòu)的偏移距離D和γ角度。在具有零轉(zhuǎn)盤旋轉(zhuǎn)速度和在其強(qiáng)度足以影響轉(zhuǎn)盤旋轉(zhuǎn)的風(fēng)啟動(dòng)時(shí),控制機(jī)構(gòu)將產(chǎn)生比較大的γ角的信號(hào),通常為45°的量級(jí)。較大的γ角度可以產(chǎn)生足夠的升力引起轉(zhuǎn)動(dòng)。一旦旋轉(zhuǎn)開始進(jìn)行,控制機(jī)構(gòu)將發(fā)送信號(hào)給調(diào)整機(jī)構(gòu),以減少偏移D。這就不難理解,較大的γ角為了開始旋轉(zhuǎn)產(chǎn)生了一個(gè)升力,但這是以產(chǎn)生一個(gè)較大比例氣動(dòng)阻力為代價(jià)的。這種阻力會(huì)限制為給定的風(fēng)速達(dá)到的最大傳送帶的轉(zhuǎn)速,從而降低角γ并將減少阻力,允許更快的旋轉(zhuǎn)和取得更多的風(fēng)能,提高利用率[13]。
有一個(gè)問題是困擾著所有風(fēng)力發(fā)電機(jī)的,那就是大風(fēng)條件下的速度問題。根據(jù)現(xiàn)有風(fēng)速來看,本設(shè)計(jì)翼型前緣部分或頂端部分的旋轉(zhuǎn)速度可高達(dá)10。因此,如果遇到一個(gè)風(fēng)速會(huì)導(dǎo)致過快轉(zhuǎn)動(dòng)或?qū)Ρ驹O(shè)計(jì)各部分造成過大壓力,控制機(jī)構(gòu)可以通過將驅(qū)動(dòng)裝置上的負(fù)荷減少和/或通過增加γ角度來達(dá)到增加阻力,減慢轉(zhuǎn)動(dòng)的效果[14]。如果這些方法都不足以維持低于設(shè)計(jì)安全極限轉(zhuǎn)速,制動(dòng)機(jī)構(gòu)就可以通過控制機(jī)構(gòu)或預(yù)防傳感器系統(tǒng)接合,特別是在非常高的風(fēng)速狀況下,其中渦輪機(jī)結(jié)構(gòu)的主要目標(biāo)不再是提取能量而是保證自身不受損壞,即圖8中出現(xiàn)的情況。在此種狀況下,在此角度的所有翼型件將基本上與風(fēng)平行的,不能提供升力,并因此,很少或基本沒有產(chǎn)生轉(zhuǎn)動(dòng)。
4.9電子控制
第5章 結(jié)論
5 結(jié) 論
近年來隨著清潔能源產(chǎn)業(yè)的大力發(fā)展,風(fēng)能的利用越來越受到關(guān)注。由于垂直軸風(fēng)機(jī)體積小,噪聲低,利用率高等種種優(yōu)點(diǎn),使其在未來的能源發(fā)展過程中應(yīng)用前景十分開闊。本設(shè)計(jì)主要是針對(duì)市場(chǎng)上現(xiàn)存的垂直軸風(fēng)機(jī)進(jìn)行改善,在進(jìn)一步提升用能效率的同時(shí),力求在保持垂直軸風(fēng)機(jī)葉片正常旋轉(zhuǎn)的基礎(chǔ)上,滿足葉片自身偏轉(zhuǎn)的要求,并保證偏轉(zhuǎn)角度,防止造成葉片損傷。從結(jié)構(gòu)等方面進(jìn)行設(shè)計(jì)改造,制造出新型垂直軸風(fēng)機(jī)。
在對(duì)翼型件部分進(jìn)行改良后,本設(shè)計(jì)仍存在著種種不完善之處。例如,葉片偏轉(zhuǎn)角度控制等問題,且從設(shè)計(jì)到實(shí)物的生產(chǎn)中也會(huì)不可避免的遇到困難。
總體而言,在成本幾乎不增長(zhǎng)的情況下,本設(shè)計(jì)不僅提升了利用率,而且減少了葉片的損耗,在實(shí)際應(yīng)用中會(huì)取得更好的使用效果。
參考文獻(xiàn)
參考文獻(xiàn)
[1] 百度文庫
[2] 美國(guó)通用電氣公司.多段式風(fēng)力渦輪機(jī)葉片和用于組裝該葉片的方法[P].中國(guó)專利:
200810188672,2009-06-24.
[3] 王承煦,張?jiān)?風(fēng)力發(fā)電[M].北京:中國(guó)電力出版社,2002.
[4] 廖明夫,R.Gasch,J.Twele.風(fēng)力發(fā)電技術(shù)[M].西安:西北工業(yè)大學(xué)出版社,2009.
[5] 李俊峰等.中國(guó)風(fēng)電發(fā)展報(bào)告[M].北京:中國(guó)環(huán)境科學(xué)出版社,2012.
[6] 郭太英,黎發(fā)貴.從國(guó)外風(fēng)電發(fā)展探討我國(guó)風(fēng)電發(fā)展思路[J].水電勘測(cè)設(shè)計(jì),2006
[7] 黃繼雄.風(fēng)力機(jī)專用新翼型及其氣動(dòng)特性研究:[D].汕頭大學(xué),2001
[8] 唐進(jìn).提高風(fēng)力機(jī)翼型氣動(dòng)性能的研究:[D].清華大學(xué),2004
[9] 包耳,邵曉榮,劉德庸.風(fēng)力機(jī)葉片設(shè)計(jì)的新方法[J].機(jī)械設(shè)計(jì),2005,22(2):24-26
[10] 張石強(qiáng).風(fēng)力發(fā)電機(jī)專用翼型及葉片關(guān)鍵設(shè)計(jì)理論研究[D].重慶:重慶大學(xué),2010
[11] 吳偉斌,改善垂直軸風(fēng)機(jī)效率的葉片轉(zhuǎn)動(dòng)慣量實(shí)驗(yàn)研究。華南農(nóng)業(yè)大學(xué),2013,34
[12] 劉桂霞,垂直軸風(fēng)機(jī)的參數(shù)優(yōu)化設(shè)計(jì)。河北建筑工程學(xué)院,2010
[13] J.Selwin.Rajadurai,T.Christopher,G.Thanigaiyarasu3B-Nageswara Rao.Finite
element analysis with an improved failure criterion for composite wind
turbine blades [J].Forschung im Ingenieurwesen,2008,72(4): 193-207.
[14] M.Grujicic,G.Arakere,E.Subramanian,V.Sellappan,A.Vallejo,
M.Ozen.Structural-Response Analysis,Fatigue-Life Prediction,and Material
Selection for 1MWHorizontal-Axis wind-Turbine Blades[J].Materials
Engineering and Performance, 2010,19(6):790-801.
15
致謝
致 謝
本次畢業(yè)設(shè)計(jì)感謝我的導(dǎo)師姜?jiǎng)爬蠋煂?duì)我的細(xì)心指導(dǎo),在他的指導(dǎo)下我順利完成了畢業(yè)設(shè)計(jì)及論文。從畢業(yè)設(shè)計(jì)選題初期到最終的論文設(shè)計(jì)完成,多虧了姜老師給予我無限的包容與理解,我才能解決各種難題,完成最終的設(shè)計(jì)。
另外,姜老師擁有嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,在畢業(yè)設(shè)計(jì)過程中對(duì)我們嚴(yán)格要求,同時(shí)也在我遇到困難感到壓力時(shí)及時(shí)排憂解惑,對(duì)于問題更是有獨(dú)到的見解和處理方式,所有這些都讓我受益匪淺。
感謝校領(lǐng)導(dǎo)和學(xué)院的其他老師,感謝我的母校金陵科技學(xué)院,在這里四年的校園生活將成為我以后生活中的美好回憶,本文參考了大量的文獻(xiàn)資料,感謝各位學(xué)術(shù)界的前輩們
16