2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理.doc
《2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理.doc(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 理 教材分析 這節(jié)內(nèi)容是在掌握了任意角的三角函數(shù)的概念、向量的坐標(biāo)表示以及向量數(shù)量積的坐標(biāo)表示的基礎(chǔ)上,進(jìn)一步研究用單角的三角函數(shù)表示的兩角和與差的三角函數(shù).這些內(nèi)容在高等數(shù)學(xué)、電功學(xué)、力學(xué)、機(jī)械設(shè)計(jì)與制造等方面有著廣泛的應(yīng)用,因此要求學(xué)生切實(shí)學(xué)好,并能熟練的應(yīng)用,以便為今后的學(xué)習(xí)打下良好的基礎(chǔ). “兩角差的余弦公式”在教科書中采用了一種易于教學(xué)的推導(dǎo)方法,即先借助于單位圓中的三角函數(shù)線,推出α,β,α-β均為銳角時(shí)成立.對(duì)于α,β為任意角的情況,教材運(yùn)用向量的知識(shí)進(jìn)行了探究.同時(shí),補(bǔ)充了用向量的方法推導(dǎo)過程中的不嚴(yán)謹(jǐn)之處,這樣,兩角差的余弦公式便具有了一般性. 這節(jié)課的重點(diǎn)是兩角差的余弦公式的推導(dǎo),難點(diǎn)是把公式中的α,β角推廣到任意角. 教學(xué)目標(biāo) 1. 通過對(duì)兩角差的余弦公式的探究過程,培養(yǎng)學(xué)生通過交流,探索,發(fā)現(xiàn)和獲得新知識(shí)的能力. 2. 通過兩角差的余弦公式的推導(dǎo),體會(huì)知識(shí)的發(fā)生、發(fā)展的過程和初步的應(yīng)用過程,培養(yǎng)學(xué)生科學(xué)的思維方法和勇于探索的科學(xué)精神. 3. 能正確運(yùn)用兩角差的余弦公式進(jìn)行簡單的三角函數(shù)式的化簡、求值和恒等式證明. 任務(wù)分析 這節(jié)內(nèi)容以問題情景中的問題作為教學(xué)的出發(fā)點(diǎn),利用單位圓中的三角函數(shù)線和平面向量的數(shù)量積的概念推導(dǎo)出結(jié)論,并不斷補(bǔ)充推導(dǎo)過程中的不嚴(yán)謹(jǐn)之處.推導(dǎo)過程采用了從特殊到一般逐層遞進(jìn)的思維方法,學(xué)生易于接受.整個(gè)過程始終結(jié)合單位圓,以強(qiáng)調(diào)其直觀性.對(duì)于公式中的α和β角要強(qiáng)調(diào)其任意性.?dāng)?shù)學(xué)中要注意運(yùn)用啟發(fā)式,切忌把結(jié)果直接告訴學(xué)生,盡量讓學(xué)生通過觀察、思考和探索,自己發(fā)現(xiàn)公式,使學(xué)生充分體會(huì)到成功的喜悅,進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)他們學(xué)習(xí)的積極性,從而使其自覺主動(dòng)地學(xué)習(xí). 教學(xué)過程 一、問題情景 我們已經(jīng)學(xué)過誘導(dǎo)公式,如 可以這樣來認(rèn)識(shí)以上公式:把角α轉(zhuǎn)動(dòng),則所得角α+的正弦、余弦分別等于cosα和-sinα.把角α轉(zhuǎn)動(dòng)π,則所得角α+π的正弦、余弦分別等于-sinα和-cosα. 由此,使我們想到一個(gè)一般性的問題:如果把角α的終邊轉(zhuǎn)動(dòng)β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦來表示呢? 出示一個(gè)實(shí)際問題: 右圖41-1是架在小河邊的一座吊橋的示意圖.吊橋長AB=a(m),A是支點(diǎn),在河的左岸.點(diǎn)C在河的右岸,地勢(shì)比A點(diǎn)高.AD表示水平線,∠DAC=α,α為定值.∠CAB=β,β隨吊橋的起降而變化.在吊橋起降的過程中,如何確定點(diǎn)B離開水平線AD的高度BE? 由圖可知BE=asin(α+β). 我們的問題是:如何用α和β的三角函數(shù)來表示sin(α+β).如果α+β為銳角,你能由α,β的正弦、余弦求出sin(α+β)嗎? 引導(dǎo)學(xué)生分析:事實(shí)上,我們?cè)谘芯咳呛瘮?shù)的變形或計(jì)算時(shí),經(jīng)常提出這樣的問題:能否用α,β的三角函數(shù)去表示αβ的三角函數(shù)?為了解決這類問題,本節(jié)首先來探索α-β的余弦與α,β的函數(shù)關(guān)系式. 更一般地說,對(duì)于任意角α,β,能不能用α,β的三角函數(shù)值把α+β或α-β的三角函數(shù)值表示出來呢? 二、建立模型 1. 探 究 (1)猜想:cos(α-β)=cosα-cosβ. (2)引導(dǎo)學(xué)生通過特例否定這一猜想. 例如,α=60,β=30,可以發(fā)現(xiàn),左邊=cos(60-30)=cos30=,右邊=cos60-cos30=-.顯然,對(duì)任意角α,β,cos(α-β)=cosα-cosβ不成立. (3)再引導(dǎo)學(xué)生從道理上否定這一猜想. 不妨設(shè)α,β,α-β均為銳角,則α-β<α,則cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ. 2. 分析討論 (1)如何把α,β,α-β角的三角函數(shù)值之間建立起關(guān)系?要獲得相應(yīng)的表達(dá)式需要哪些已學(xué)過的知識(shí)? (2)由三角函數(shù)線的定義可知,這些角的三角函數(shù)值都與單位圓中的某些有向線段有關(guān)系,那么,這些有向線段之間是否有關(guān)系呢? 3. 教師明晰 通過學(xué)生的討論,教師引導(dǎo)學(xué)生作出以下推理: 設(shè)角α的終邊與單位圓的交點(diǎn)為P1,∠POP1=β,則∠POx=α-β. 過點(diǎn)P作PM⊥x軸,垂足為M,那么,OM即為α-β角的余弦線,這里要用表示α,β的正弦、余弦的線段來表示OM. 過點(diǎn)P作PA⊥OP1,垂足為A,過點(diǎn)A作AB⊥x軸,垂足為B,再過點(diǎn)P作PC⊥AB,垂足為C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是 OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. 4. 提出問題,組織學(xué)生討論 (1)當(dāng)α,β,α-β為任意角時(shí),上述推導(dǎo)過程還能成立嗎? 若要說明此結(jié)果是否對(duì)任意角α,β都成立,還要做不少推廣工作,可引導(dǎo)學(xué)生獨(dú)立思考. 事實(shí)上,根據(jù)誘導(dǎo)公式,總可以把α,β的三角函數(shù)化為(0,)內(nèi)的三角函數(shù),再根據(jù)cos(-β)=cosβ,把α-β的余弦,化為銳角的余弦.因此, 三、解釋應(yīng)用 [例 題] 1. 求cos15及cos105的值. 分析:本題關(guān)鍵是將15角分成45與30的差或者分解成60與45的差,再利用兩角差的余弦公式即可求解.對(duì)于cos105,可進(jìn)行類似地處理,cos105=cos(60+45). 2. 已知sinα=,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)的值. 分析:觀察公式Cα+β與本題已知條件應(yīng)先計(jì)算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函數(shù)的平方關(guān)系,并注意α,β的取值范圍來求解. [練 習(xí)] 1. (1)求sin75的值. (2)求cos75cos105+sin75sin105的值. (3)化簡cos(A+B)cosB+sin(A+B)sinB. (4)求cos215-sin215的值. 分析:對(duì)于(1),可先用誘導(dǎo)公式化sin75為cos15,再用例題1中的結(jié)果即可.對(duì)于(2),逆向使用公式Cα-β,即可將原式化為cos30.對(duì)于(3),可以把A+B角看成一個(gè)整體,去替換Cα-β中的α角,用B角替換β角. 2. (1)求證:cos(-α) =sinα. (2)已知sinθ=,且θ為第二象限角,求cos(θ-)的值. (3)已知sin(30+α)=,60<α<150,求cosα. 分析:(1)和(差)公式可看成誘導(dǎo)公式的推廣,誘導(dǎo)公式是和(差)公式的特例. (2)在三角函數(shù)求值問題中,變角是一種常用的技巧,α=(30+α)-30,這樣可充分利用題中已知的三角函數(shù)值. 3. 化簡cos(36+α)cos(α-54)+sin(36+α)sin(α-54). 分析:這里可以把角36+α與α-54均看成單角,進(jìn)而直接運(yùn)用公式Cα-β,不必將各式展開后再計(jì)算. 分析:本題是一道綜合題,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只須將已知兩式平方相加求出cosαcosβ+sinαsinβ即可. 四、拓展延伸 1. 由任意角三角函數(shù)定義,可知角α,β的終邊與單位圓交點(diǎn)的坐標(biāo)均可用α,β的三角函數(shù)表示,即α-β角與,兩向量的夾角有關(guān),那么能否用向量的有關(guān)知識(shí)來推導(dǎo)公式Cα-β呢? 教師引導(dǎo)學(xué)生分析:在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角α,β,它們的終邊與單位圓的交點(diǎn)為A,B,則=(cosα,sinα),=(cosβ,sinβ). 由向量數(shù)量積的概念,有 =||||c(diǎn)os(α-β)=cos(α-β). 由向量的數(shù)量積的坐標(biāo)表示,有 =cosαcosβ+sinαsinβ. 于是,有 cos(α-β)=cosαcosβ+sinαsinβ. 依據(jù)向量數(shù)量積的概念,角α-β必須符合0≤α-β≤π,即在此條件下,以上推導(dǎo)才是正確的. 由于α,β都是任意角,α-β也是任意角,因此,須研究α-β為任意角時(shí),以上推導(dǎo)是否正確. 當(dāng)α-β為任意角時(shí),由誘導(dǎo)公式總可以找到一個(gè)角θ,θ∈[0,2π),使cosθ=cos(α-β). 若θ∈[0,π],則=cosθ=cos(α-β); 若θ∈[π,2π],則2π-θ∈[0,π],且 =cos(2π-θ)=cosθ=cos(α-β). 于是,對(duì)于任意角α,β都有 2. 教師提出進(jìn)一步拓展性問題:本節(jié)問題情景中,涉及如何用sinα,sinβ,cosα,cosβ來表示sin(α+β)的問題,試探索與研究sin(α+β)的表達(dá)式. 點(diǎn) 評(píng) 這篇案例設(shè)計(jì)完整,思路清晰.案例首先通過問題情景闡述了兩角和、差、三角函數(shù)公式的產(chǎn)生背景,然后通過組織學(xué)生分析,討論,并借助于單位圓中的三角函數(shù)線對(duì)α,β,α-β為銳角時(shí)給出證明,進(jìn)而用向量知識(shí)探究任意角的情形.這些均體現(xiàn)了數(shù)學(xué)中從特殊到一般的思想方法,符合新課改的基本理念.同時(shí),例題與練習(xí)由淺入深,完整,全面. 總之,關(guān)注學(xué)生的已有基礎(chǔ),充分利用歸納、類比等方法激發(fā)學(xué)生進(jìn)一步探究的欲望,建立Cαβ模型.這種設(shè)計(jì)思路有利于學(xué)生數(shù)學(xué)思維水平的提高,同時(shí)及時(shí)鞏固,應(yīng)用,拓展延伸,體現(xiàn)了對(duì)傳統(tǒng)的中國式數(shù)學(xué)教學(xué)精華的繼承.如果能在結(jié)束時(shí)再創(chuàng)設(shè)引導(dǎo)學(xué)生自我小結(jié)、反思的環(huán)節(jié),可能會(huì)錦上添花.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 兩角和與差的余弦教案 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 余弦 教案
鏈接地址:http://weibangfood.com.cn/p-2552267.html