2019-2020年高三數(shù)學總復習 集合之間的關系教案 理.doc
《2019-2020年高三數(shù)學總復習 集合之間的關系教案 理.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三數(shù)學總復習 集合之間的關系教案 理.doc(5頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三數(shù)學總復習 集合之間的關系教案 理 教材分析 集合之間的關系是集合運算的基礎和前提,是用集合觀點理清集合之間內在聯(lián)系的橋梁和工具.這節(jié)內容是對集合的基本概念的深化,延伸,首先通過類比、實例引出子集的概念,再結合實例加以說明,然后通過實例說明子集包括真子集和兩集合相等兩種情況.這節(jié)內容的教學重點是子集的概念,教學難點是弄清元素與子集、屬于與包含之間的區(qū)別. 教學目標 1. 通過對子集概念的歸納、抽象和概括,體驗數(shù)學概念產生和形成的過程,培養(yǎng)學生的抽象、概括能力. 2. 了解集合的包含、相等關系的意義,理解子集、真子集的概念,培養(yǎng)學生對數(shù)學的理解能力. 3. 通過對集合之間的關系即子集的學習,初步體會數(shù)學知識發(fā)生、發(fā)展、運用的過程,培養(yǎng)學生的科學思維方法. 任務分析 這節(jié)內容是在學生已經掌握了集合的概念和表示方法以及兩個實數(shù)之間有大小關系的基礎上,進一步學習和研究兩個集合之間的關系,采用從實例入手,由具體到抽象,由特殊到一般,再由抽象、一般到具體、特殊的方法,知識的產生、發(fā)生比較自然,易于學習、接受和掌握;采用分類討論的方法闡述子集包括真子集、等集(兩集合相等)兩種情況,這可以使學生更好地認識子集、真子集、等集三者之間的內在聯(lián)系. 教學設計 一、問題情境 1. 元素與集合之間的關系是什么? 元素與集合是從屬關系,即對一個元素x是某集合A中的元素時,它們的關系為x∈A.若一個對象x不是某集合A中的元素時,它們的關系為xA. 2. 集合有哪些表示方法? 列舉法,描述法,Venn圖法. 數(shù)與數(shù)之間存在著大小關系,那么,兩個集合之間是不是也存在著類似的關系呢?先看下面兩個集合:A={1,2,3},B={1,2,3,4,5}.它們之間有什么關系呢? 二、建立模型 1. 引導學生分析討論 集合A中的任何一個元素都是集合B中的元素. 集合B中的元素4,5不是集合A中的元素. 2. 與學生共同歸納,明晰子集的定義 對于上述問題,教師點撥,A是B的子集,B不是A的子集. 子集:對于兩個集合A,B,如果集合A中的任何一個元素都是集合B中的元素,即集合A包含于集合B,或集合B包含集合A,記作AB(或BA),就說集合A是集合B的子集. 用符號語言可表示為:如果任意元素x∈A,都有x∈B,那么AB. 規(guī)定:空集是任何集合的子集,即對于任意一個集合A,有A. 3. 提出問題,組織學生討論 給出三個集合:A={1,2,3},B={1,2,3,4,5},C={1,2,3}. (1)A是B的子集嗎?B是A的子集嗎? (2)A是C的子集嗎?C是A的子集嗎? 4. 教師給出真子集與兩集合相等的定義 上述問題中,集合A是集合B的子集,并且集合B中有元素不屬于集合A,這時,我們就說集合A是集合B的真子集;集合A是集合C的子集,且集合A與集合C的元素完全相同,這時,我們就說集合A與集合C相等. 真子集:如果集合A是集合B的子集,即AB,并且B中至少有一個元素不屬于集合A,那么集合A叫作集合B的真子集,記作AB或BA. AB的Venn圖為 兩集合相等:如果集合A中的每一個元素都是集合B中的元素,即AB,反過來,集合B的每一個元素也都是集合A 中的元素,即BA,那么就說集合A等于集合B,記作A=B. A=B的Venn圖為 思考:設A,B是兩個集合,AB,AB,A=B三者之間的關系是怎樣的? 5. 子集、真子集的有關性質 由子集、真子集的定義可推知: (1)對于集合A,B,C,如果AB,BC,那么AC. (2)對于集合A,B,C,如果AB,BC,那么AC. (3)AA. (4)空集是任何非空集合的真子集. 三、解釋應用 [例 題] 1. 用適當?shù)姆枺ā?,,=,,)填空? (1)3 ___________ {1,2,3}. (2)5 ___________ {5}. (3)4 ___________ {5}. (4){a} ___________ {a,b,c}. (5)0 ___________ . (6){a,b,c} ___________ {b,c}. (7) ___________ {0}. (8) ___________ {}. (9){1,2} ___________ {2,1}. (10)G={x|x是能被3整除的數(shù)} ___________ H={x|x是能被6整除的數(shù)}. 2. 寫出集合{a,b}的所有子集,并指出其中哪些是它的真子集. 3. 說出下列每對集合之間的關系. (1)A={1,2,3,4,},B={3,4}. (2)P={x|x2=1},Q={-1,1}. (3)N,N*. (4)C={x∈R|x2=-1},D={0}. [練 習] 1. 用適當?shù)姆枺ā?,,=,,)填空? (1)a ___________ {a}. (2)b ___________ {a}. (3) ___________ {1,2}. (4){a,b} ___________ {b,a}. (5)A={1,2,4} ___________ B={x|x是8的正約數(shù)}. 2. 求下列集合之間的關系,并用Venn圖表示. A={x|x是平行四邊形}, B={x|x是菱形}, C={x|x是矩形}, D={x|x是正方形}. 拓展延伸 填 表 表2-1 集 合 集合中元素的個數(shù) 子集的個數(shù) 真子集的個數(shù) {a} 1 {a,b} 2 {a,b,c} 3 {a,b,c,d} 4 … … (1)你能找出“集合中元素的個數(shù)”與“子集的個數(shù)”、“真子集的個數(shù)”之間關系嗎? (2)如果一個集合中有n個元素,你能寫出計算它的所有子集個數(shù)與真子集個數(shù)的公式嗎?(用n表達) 點 評 這篇案例結構嚴謹,思路清晰,概念和關系的引出注重從具體到抽象、從特殊到一般、從感性到理性的認識過程.具體地說就是,先結合實例研究兩個具體集合的關系,從而引出子集的定義,然后再結合實例說明AB,包括AB,A=B兩種情況,再給出真子集、等集的定義.這樣的處理方式,符合學生的認知規(guī)律,符合新課程的理念,例題與練習由淺入深,注重數(shù)形結合,使學生從不同角度加深了對集合之間的關系的理解.拓展延伸注重培養(yǎng)學生從特殊到一般地解決數(shù)學問題的能力.值得注意的是,在引出子集定義時,最好明確指出,集合之間的“大小”關系實質上就是包含關系.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三數(shù)學總復習 集合之間的關系教案 2019 2020 年高 數(shù)學 復習 集合 之間 關系 教案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://weibangfood.com.cn/p-2561704.html