數(shù)字圖像處理基本運(yùn)算.ppt
《數(shù)字圖像處理基本運(yùn)算.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《數(shù)字圖像處理基本運(yùn)算.ppt(84頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
基本運(yùn)算分類(lèi) 點(diǎn)運(yùn)算 代數(shù)運(yùn)算 幾何運(yùn)算 直方圖,三 數(shù)字圖像處理中基本運(yùn)算,3.1、數(shù)字圖像處理基本運(yùn)算的分類(lèi),圖像處理基本功能 按圖像處理的輸出形式: 1)單幅圖像 → 單幅圖像 ,如圖3.1.1 (a). 2)多幅圖像 →單幅圖像, 如圖3.1.1 (b). 3)單(或多)幅圖像→ 數(shù)字或符號(hào)等。如圖3.1.1 (c).,3.1.1 圖像處理的基本功能,2 基本運(yùn)算分類(lèi),點(diǎn)運(yùn)算: 圖像的點(diǎn)處理運(yùn)算(Point Operation)將輸入圖像映射為輸出圖像,輸出圖像每個(gè)像素點(diǎn)的灰度值僅由對(duì)應(yīng)輸入像素點(diǎn)的值決定。它常用于改變圖像的灰度范圍及分布,是圖像數(shù)字化及圖像顯示的重要工具。點(diǎn)處理運(yùn)算因其作用性質(zhì)有時(shí)也被稱(chēng)為對(duì)比度增強(qiáng)、對(duì)比度拉伸或灰度變換等。設(shè)輸入圖像各點(diǎn)的像素值為A(x, y),輸出圖像各點(diǎn)的像素值為B(x, y),則點(diǎn)處理運(yùn)算可表示為: 鄰域運(yùn)算:輸出圖像中每個(gè)象素的灰度值由輸入圖像的一個(gè)鄰域內(nèi)的幾個(gè)象素的灰度值共同決定。鄰域處理是根據(jù)輸入圖像某像素F(x, y)的一個(gè)小鄰域N(F(x, y))中的像素值,按某種函數(shù)關(guān)系來(lái)計(jì)算出輸出像素G(x, y)點(diǎn)的像素值的方法。其數(shù)學(xué)關(guān)系可表示為:,,,3.2、點(diǎn)運(yùn)算,作用:改變圖像數(shù)據(jù)占據(jù)的灰度范圍。 對(duì)比度增強(qiáng)、灰度變換 幾種典型的點(diǎn)運(yùn)算: 1、圖像的亮度調(diào)整,圖3.2.1 原始圖像 亮度增加 亮度降低,2、 對(duì)比度調(diào)整----圖像拉伸,(1)灰度的線(xiàn)性變換: 它是將圖像中所有點(diǎn)的灰度按線(xiàn)性變換函數(shù)進(jìn)行變換。 設(shè)原圖像f(x, y) 灰度范圍:[a, b] 變換后圖像g(x, y) 灰度范圍:[c, d] 則線(xiàn)性變換可表示為,討論 : 1) d-c=b-a,圖像對(duì)比度不變. c=a, 沒(méi)有變化,圖3.2.2 (a) c 不等于a, 灰度調(diào)整,圖3.2.1. 2)d-cb-a, 圖像灰度拉伸,對(duì)比度增強(qiáng),圖3.2.2 (b) ; 3)d-cb-c, 對(duì)比度減小,圖3.2.2 (c) ; 4)反色, ,圖3.2.2 (d) .,,(a) (b) ( c) (d) 圖3.2.2 線(xiàn)性點(diǎn)運(yùn)算實(shí)例,,,灰度線(xiàn)性變換函數(shù)f(r)是一個(gè)一維線(xiàn)性函數(shù): 其中,a為線(xiàn)性變換的斜率,b為線(xiàn)性變換函數(shù)在y軸的截距,如圖4.1.1所示。,圖4.1.1 灰度線(xiàn)性變換,,,在灰度的線(xiàn)性變換中: 當(dāng)a>1時(shí),輸出圖像的對(duì)比度將增大; 當(dāng)a<1時(shí),輸出圖像的對(duì)比度將減小; 當(dāng)a=1且b≠0時(shí),所進(jìn)行的操作僅使所有像素的灰度值上移或下移,其效果是使整個(gè)圖像更暗或更亮; 如果a<0,則暗區(qū)域?qū)⒆兞?,亮區(qū)域?qū)⒆儼担@時(shí)完成圖像的求補(bǔ)運(yùn)算。 特殊情況下: 當(dāng)a=1,且b=0時(shí),輸出圖像和輸入圖像相同; 當(dāng)a=-1,且b=255時(shí),輸出圖像的灰度值將反轉(zhuǎn)(負(fù)片)。,問(wèn)題:運(yùn)算后的灰度值超出灰度范圍,怎么辦?,,原始圖像,灰度線(xiàn)性變換處理示例,,,,,取a=0.4,b=0 對(duì)比度 減小,(2)分段灰度的線(xiàn)性變換 目的:突出感興趣的目標(biāo)或灰度區(qū)間,相對(duì)抑制那些不感興趣的灰度區(qū)域,,分段線(xiàn)性變換,,對(duì)灰度區(qū)間 [0, a]和[b, Mf]加以壓縮,[a, b]進(jìn)行擴(kuò)展。通過(guò)細(xì)心調(diào)整折線(xiàn)拐點(diǎn)的位置及控制分段直線(xiàn)的斜率,可對(duì)任一灰度區(qū)間進(jìn)行擴(kuò)展或壓縮。,適用于:在黑色或白色附近有噪聲干擾的情況。如, 照片中的劃痕等。,,,,,灰度線(xiàn)性變換處理示例,,比較圖中兩圖像的灰度拉伸前后的直方圖可以發(fā)規(guī)原圖像0~50的灰度區(qū)間被拉伸到0~150;50~200的灰度區(qū)間被壓縮到100~150;200~255的灰度區(qū)間被拉伸到150~255。,線(xiàn)性變換,斜率為2,斜率為2.5,分段線(xiàn)性變換,(50,100; 180,220),(50,30;200,220),(3)非線(xiàn)性變換,常見(jiàn)的幾種非線(xiàn)性變換函數(shù),3.3、代數(shù)運(yùn)算,1. 定義:兩幅圖像進(jìn)行點(diǎn)對(duì)點(diǎn)的加、減、乘、除計(jì)算。,* g(i,j)255 g(i,j)=255 g(i,j)0 g(i,j)=0 or g(i,j)=|g(i,j)|,,,2、應(yīng)用 1)運(yùn)用減法運(yùn)算, 去除圖像的附加噪聲 去除不需要的疊加性圖案 檢測(cè)同一場(chǎng)景兩幅圖象之間的變化 計(jì)算物體邊界的梯度,運(yùn)用減法運(yùn)算,可檢測(cè)同一場(chǎng)景中兩幅圖像的變化,如運(yùn)動(dòng)目標(biāo)的跟蹤及故障檢測(cè) 2)加法運(yùn)算可以降低加性隨機(jī)噪聲 通過(guò)對(duì)多幅圖像求平均實(shí)現(xiàn) 3) 實(shí)現(xiàn)遙感圖像的比值處理 a) 擴(kuò)大不同地物的光譜 b) 消除陰影的影響 4) 乘法運(yùn)算,可以用來(lái)遮掉圖像的一部分。 如將一幅圖像與二值圖像相乘、掩模操作,,加法運(yùn)算: 去除“疊加性”噪音 生成圖象疊加效果 對(duì)于兩個(gè)圖象f(x,y)和h(x,y)的均值有: g(x,y) = 1/2f(x,y) + 1/2h(x,y) 會(huì)得到二次暴光的效果。推廣這個(gè)公式為: g(x,y) = αf(x,y) + βh(x,y) 其中α+β= 1 我們可以得到各種圖象合成的效果,也可以用于兩張圖片的銜接,,,,,,乘法主要應(yīng)用舉例 圖象的局部顯示:用二值蒙板圖象與原圖象做乘法,3.4、幾何運(yùn)算,,水平鏡像,,垂直鏡像,,圖像轉(zhuǎn)置,,,,,45度旋轉(zhuǎn),60度旋轉(zhuǎn),90度旋轉(zhuǎn),,,圖像縮放 (0.5, 0.5),圖像平移 (100,100),1) 概述 圖像的幾何變換,是指使用戶(hù)獲得或設(shè)計(jì)的原始圖像,按照需要產(chǎn)生大小、形狀和位置的變化。 基本變換: 平移、比例縮放、旋轉(zhuǎn)、反射和錯(cuò)切 此外還有: 透視變換等復(fù)合變換,以及插值運(yùn)算等。 實(shí) 現(xiàn): 通過(guò)與之對(duì)應(yīng)的矩陣線(xiàn)性變換(除了插值運(yùn)算外),1. 幾何變換基礎(chǔ),點(diǎn) 的平移,2)齊次坐標(biāo),用矩陣的形式表示:,則,無(wú)偏移量,變換矩陣,擴(kuò)展后的變換矩陣為23階,這不符合矩陣相乘規(guī)則。,擴(kuò)展,點(diǎn)的坐標(biāo),則,齊次坐標(biāo)表示法:用n+1維向量表示n維向量的方法。,齊次坐標(biāo)的幾何意義,齊次坐標(biāo)的幾何意義:相當(dāng)于點(diǎn)(x, y)落在3D空間H=1的平面上, 如果將XOY 平面內(nèi)的三角形abc 的各頂點(diǎn)表示成齊次坐標(biāo)(xi, yi, 1)(i=1, 2, 3)的形式,就變成H=1平面內(nèi)的三角形a1b1c1的各頂點(diǎn)。,將2n階的二維點(diǎn)集矩陣表示成齊次坐標(biāo)的形式 乘以相應(yīng)的變換矩陣,即 變換后的點(diǎn)集矩陣=變換矩陣T變換前的點(diǎn)集矩陣 (圖像上各點(diǎn)的新齊次坐標(biāo)) (圖像上各點(diǎn)的原齊次坐標(biāo)),3)實(shí)現(xiàn)2D圖像幾何變換的基本變換的一般過(guò)程,2 圖像平移,,圖像平移,,利用齊次坐標(biāo),變換后:,則,,,(100,100),原圖像中有點(diǎn)被移出顯示區(qū)域,部分信息丟失!,如果不想丟失被移出的部分圖像,可以將新生成的圖像寬度擴(kuò)大|Δx|, 高度擴(kuò)大|Δy|!,,?,3 圖像縮放,將給定的圖像在x軸方向按比例縮放fx倍, 在y軸方向按比例縮放fy倍,從而獲得一幅新的圖像。 fx=fy: 全比例縮放; fx≠fy:產(chǎn)生幾何畸變,則,1)最簡(jiǎn)單的比例縮?。寒?dāng) fx=fy=1/2時(shí),圖像被縮到原圖1/4。簡(jiǎn)單抽取如下圖,亦可采取其它方法,如取鄰近個(gè)象素點(diǎn)的平均值。,2) 簡(jiǎn)單的圖像放大,當(dāng)fx=fy=2時(shí),圖像被按全比例放大2倍, 放大后圖像中的(0,0)像素對(duì)應(yīng)于原圖中的(0,0)像素;(0,1)像素對(duì)應(yīng)于原圖中的(0,0.5)像素,該像素不存在!,怎么辦?插值!,最簡(jiǎn)單的插值方法: 對(duì)應(yīng)于原圖中的(0,0.5)像素(0,1) ,將其近似為(0,0)也可以近似 (0,1); (1,0)像素近似于(0, 0)或(1,0)像素; (2,0)像素對(duì)應(yīng)于原圖中的(1,0)像素,依此類(lèi)推。結(jié)果:馬賽克! 思考一個(gè)問(wèn)題:如果放大倍數(shù)太大,按照前面的方法處理會(huì)出現(xiàn)馬賽克效應(yīng),有沒(méi)有辦法解決?或者想辦法至少使之有所改善?,在輸入圖像f(x,y)中,灰度值僅在整數(shù)位置(x,y)處被定義。然而,在幾何變換中,輸出圖像g(x,y)的灰度值一般由處在非整數(shù)坐標(biāo)上的f(x,y)的值來(lái)決定。所以,如果把幾何變換看成是一個(gè)從f到g的映射,則f中的一個(gè)像素會(huì)映射到g中幾個(gè)像素之間的位置;反過(guò)來(lái)也是如此。這就需要利用灰度級(jí)插值算法以確定幾何變換后的像素的灰度值。 輸出像素通常被映射到輸入圖像中的非整數(shù)位置,即位于四個(gè)輸入像素之間來(lái)決定與該位置相對(duì)應(yīng)的灰度值,所以必須進(jìn)行插值運(yùn)算以確定輸出像素的灰度值。常用的插值算法有最近鄰插值法(Nearest neighbor)和雙線(xiàn)性插值法(Bilinear)兩種。 1. 最簡(jiǎn)單的插值方法是所謂零階插值(Zero-order)或稱(chēng)為最近鄰插值,即令輸出像素的灰度值等于離它所映射到的位置最近的輸入像素的灰度值。計(jì)算十分簡(jiǎn)單,在許多情況下,其結(jié)果也可令人接受。然而,當(dāng)圖像中包含像素之間灰度級(jí)有變化的細(xì)微結(jié)構(gòu)時(shí),最近鄰插值法會(huì)在圖像中產(chǎn)生人工的痕跡。如圖所示為一個(gè)用最近鄰插位法放大圖像的例子,從中可看出結(jié)果圖像帶有鋸齒形的邊。,2 雙線(xiàn)性插值(Bilinear) 雙線(xiàn)性插值法是一階插值(First-oder),和零階插值法相比可產(chǎn)生更令人滿(mǎn)意的效果。只是程序稍復(fù)雜一些,運(yùn)行時(shí)間稍長(zhǎng)一些。 假設(shè)輸出圖像的寬度為W,高度為H,輸入圖像的寬度為w高度為h,要將輸入圖像的尺度拉伸或壓縮變換至輸出圖像的尺度。按照線(xiàn)形插值的方法,將輸入圖像的寬度方向分為W等份,高度方向分為H等份,那么輸出圖像中任意一點(diǎn)(x,y)的灰度值就應(yīng)該由輸入圖像中四點(diǎn)(a,b)、(a+1,b)、(a,b+1)和(a+1,b+1)的灰度值來(lái)確定.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,雙線(xiàn)性插值(一階插值),,4 圖像鏡像,,,水平鏡像:,其中,fHeight為圖像高度,fWidth為寬度為fWidth,垂直鏡像:,5 圖像旋轉(zhuǎn),圖像旋轉(zhuǎn)θ角,,其中, 為圖像逆時(shí)針旋轉(zhuǎn)的角度,注意: (1) 圖像旋轉(zhuǎn)之前, 為了避免信息的丟失, 一定要有坐標(biāo)平移;有下兩種方法:,注: 一般圖像的旋轉(zhuǎn)是以圖像的中心為原點(diǎn),將圖像上的所有像素都旋轉(zhuǎn)一個(gè)相同的角度。圖像的旋轉(zhuǎn)變換是圖像的位置變換,但旋轉(zhuǎn)后,圖像的大小一般會(huì)改變。 和圖像平移一樣, 在圖像旋轉(zhuǎn)變換中既可以把轉(zhuǎn)出顯示區(qū)域的圖像截去, 也可以擴(kuò)大圖像范圍以顯示所有的圖像。,旋轉(zhuǎn)θ后的圖像(擴(kuò)大圖像、 轉(zhuǎn)出部分被截),,圖像的旋轉(zhuǎn) 例題,,,,,,,,,,,,,結(jié)論:按照?qǐng)D像旋轉(zhuǎn)計(jì)算公式獲得的結(jié)果與想象中的差異很大。,出現(xiàn)了兩個(gè)問(wèn)題:1)像素的排列不是完全按照原有的相鄰關(guān)系。這是因?yàn)橄噜徬袼刂g只能有8個(gè)方向,如下圖所示。 2)會(huì)出現(xiàn)許多的空洞點(diǎn)。,(2)圖像旋轉(zhuǎn)之后,會(huì)出現(xiàn)許多空洞點(diǎn),須進(jìn)行填充處理,以獲取較好的效果。,最簡(jiǎn)單的方法是行插值方法或列插值方法: ① 找出當(dāng)前行的最小和最大的非白點(diǎn)的坐標(biāo),記作: (i, k1)、 (i, k2)。 ② 在(k1, k2)范圍內(nèi)進(jìn)行插值,插值的方法是:空點(diǎn)的像素值等于前一點(diǎn)的像素值。 ③ 同樣的操作重復(fù)到所有行。經(jīng)過(guò)如上的插值處理之后, 圖像效果就變得自然。如上圖所示。列插值方法與此類(lèi)同, 請(qǐng)讀者自己給出。,圖像旋轉(zhuǎn)出現(xiàn)的兩個(gè)問(wèn)題的 本質(zhì) 都是因?yàn)橄袼刂档奶畛涫遣贿B續(xù)的。 因此可以采用插值填充的方法來(lái)解決。,高階插值 雙線(xiàn)性插值的缺陷 平滑作用使圖象細(xì)節(jié)退化,尤其在放大時(shí) 不連續(xù)性會(huì)產(chǎn)生不希望的結(jié)果 高階插值的實(shí)現(xiàn) 用三次樣條插值 常用卷積來(lái)實(shí)現(xiàn) 將大大增加計(jì)算量,思考一個(gè)問(wèn)題:邊界的鋸齒如何處理?,3.5、鄰域運(yùn)算,在鄰域處理中,鄰域N(F(x, y))的形狀和大小可以是各式各樣的。鄰域的大小可以是固定的,也可以是隨著所處理的像素點(diǎn)的位置而變化的。實(shí)用上一般多采用以像素(x, y)為中心的矩形對(duì)稱(chēng)鄰域。 若圖像大小為MN像素,鄰域大小為KL像素,則鄰域處理時(shí)的總計(jì)算量為O(MNKL)量級(jí)。也就是說(shuō),鄰域的計(jì)算量不僅與被處理的圖像大小成正比,也與所用鄰域大小成正比。鄰域越大,則所需的計(jì)算量亦越大。在實(shí)際圖像處理中常用的是33、55像素的矩形鄰域。鄰域處理常用于實(shí)現(xiàn)圖像的銳化或平滑處理。 圖像平滑處理的主要目的是減少圖像中的噪聲,對(duì)此可以通過(guò)考察像素的空間連續(xù)性利用其鄰域關(guān)系,使應(yīng)該平滑的區(qū)域平滑,以除去圖像中的噪聲。,,,平滑模板的思想是通過(guò)一點(diǎn)和周?chē)徲騼?nèi)像素點(diǎn)的平均來(lái)去除突然變化的點(diǎn),從而濾掉一定的噪聲,其代價(jià)是圖像有一定程度的模糊,減少圖像的模糊是圖像平滑處理研究的主要問(wèn)題之一。模板運(yùn)算的數(shù)學(xué)涵義是一種卷積(或互相關(guān))運(yùn)算。常用的平滑模板有: 1. Box模板 2. 加權(quán)模板(Weighted average filter) 等 3. 高斯模板(Gaussian Filter) 由σ=3的連續(xù)Gaussian分布經(jīng)采樣、量化, 并使模板歸一化,,,思想是通過(guò)一點(diǎn)和周?chē)徲騼?nèi)像素點(diǎn)的平均來(lái)去除突然變化的點(diǎn),從而濾掉一定的噪聲,其代價(jià)是圖像有一定程度的模糊,減少圖像的模糊是圖像平滑處理研究的主要問(wèn)題之一,3.6 非幾何變換:直方圖,直方圖 圖象直方圖的定義 直方圖應(yīng)用舉例 直方圖均衡化 直方圖匹配,圖象直方圖的定義(1) 一個(gè)灰度級(jí)別在范圍[0,L-1]的數(shù)字圖象的直方圖是一個(gè)離散函數(shù) p(rk)= nk/n n 是圖象的像素總數(shù) nk是圖象中第k個(gè)灰度級(jí)的像素總數(shù) rk 是第k個(gè)灰度級(jí),k = 0,1,2,…,L-1,圖象直方圖的定義舉例,,,p(rk),Nk,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.1,0.2,0.3,0.4,31,15,7,23,圖象直方圖的定義(2) 一個(gè)灰度級(jí)別在范圍[0,L-1]的數(shù)字圖象的直方圖是一個(gè)離散函數(shù) p(rk)= nk k = 0,1,2,…,L-1 由于rk的增量是1,直方圖可表示為: p(k)= nk 即,圖象中不同灰度級(jí)像素出現(xiàn)的次數(shù),兩種圖象直方圖定義的比較 p(rk)= nk p(rk)= nk/n 使函數(shù)值正則化到[0,1]區(qū)間,成為實(shí)數(shù)函數(shù) 函數(shù)值的范圍與象素的總數(shù)無(wú)關(guān) 給出灰度級(jí)rk在圖象中出現(xiàn)的概率密度統(tǒng)計(jì),較暗圖象的直方圖,,,p(rk),nk,,,,,,,,,,,,較亮圖象的直方圖,,,p(rk),nk,,,,,,,,,,,,,,,,對(duì)比度較低圖象的直方圖,,,p(rk),nk,,,,,,,,,,,,對(duì)比度較高圖象的直方圖,,,p(rk),nk,,,,,,,,,,,,,,,,,,,,,,,,,,,,,直方圖應(yīng)用舉例——直方圖均衡化 一種自動(dòng)調(diào)節(jié)圖象對(duì)比度質(zhì)量的算法 使用的方法是灰度級(jí)變換:s = T(r) 基本思想是通過(guò)灰度級(jí)r的概率密度函數(shù)p(rk ),求出灰度級(jí)變換T(r) ,建立等值像素出現(xiàn)的次數(shù)與結(jié)果圖象像素值之間的關(guān)系。,,直方圖均衡化方法,直方圖均衡方法的基本思想是,對(duì)在圖像中像素個(gè)數(shù)多的灰度級(jí)進(jìn)行展寬,而對(duì)像素個(gè)數(shù)少的灰度級(jí)進(jìn)行縮減。從而達(dá)到清晰圖像的目的。,一、 求灰度直方圖,設(shè)f、g分別為原圖像和處理后的圖像。 求出原圖f的灰度直方圖,設(shè)為h。 顯然,在[0,255]范圍內(nèi)量化時(shí),h是一個(gè)256維的向量。,例,,f,h,注:這里為了描述方便起見(jiàn),設(shè)灰度級(jí)的分布范圍為[0,9]。,二、計(jì)算灰度分布概率,2.1 求出圖像f的總體像素個(gè)數(shù) Nf = m*n (m,n分別為圖像的長(zhǎng)和寬) 2.2 計(jì)算每個(gè)灰度級(jí)的像素個(gè)數(shù)在整個(gè) 圖像中所占的百分比。 hs(i)=h(i)/Nf (i=0,1,…,255),例,hs,h,三、計(jì)算灰度級(jí)的累計(jì)分布,設(shè)圖像各灰度級(jí)的累計(jì)分布hp。,例,,hp,hs,四、計(jì)算新圖像的灰度值,新圖像g的灰度值g(i,j)為,例,,f,hp,g,五、處理前后灰度直方圖的比較,f 的灰度直方圖,g 的灰度直方圖,直方圖均衡化的效果,1. 圖像處理算法可分為幾類(lèi)?圖像的基本運(yùn)算有哪幾種? 2. 為什么進(jìn)行灰度變換可以增強(qiáng)對(duì)比度?如果想減弱對(duì)比度怎么辦? 3. 圖像的負(fù)片是怎么形成的?,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 數(shù)字圖像 處理 基本 運(yùn)算
鏈接地址:http://weibangfood.com.cn/p-2836486.html