中考數(shù)學(xué)精學(xué)巧練備考秘籍第5章圖形的性質(zhì)第24課時(shí)直角三角形與勾股定理.doc
《中考數(shù)學(xué)精學(xué)巧練備考秘籍第5章圖形的性質(zhì)第24課時(shí)直角三角形與勾股定理.doc》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)精學(xué)巧練備考秘籍第5章圖形的性質(zhì)第24課時(shí)直角三角形與勾股定理.doc(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
教學(xué)資料參考范本 中考數(shù)學(xué)精學(xué)巧練備考秘籍第5章圖形的性質(zhì)第24課時(shí)直角三角形與勾股定理 撰寫人:__________________ 時(shí) 間:__________________ 【精學(xué)】 考點(diǎn)一、直角三角形的性質(zhì) 1、直角三角形的兩個(gè)銳角互余 可表示如下:∠C=90∠A+∠B=90 2、在直角三角形中,30角所對的直角邊等于斜邊的一半。 ∠A=30 可表示如下: BC=AB ∠C=90 3、直角三角形斜邊上的中線等于斜邊的一半 ∠ACB=90 可表示如下: CD=AB=BD=AD D為AB的中點(diǎn) 4、勾股定理 直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即 5、直角三角形等積公式:ABCD=ACBC 考點(diǎn)二、直角三角形的判定 1、有一個(gè)角是直角的三角形是直角三角形。 2、如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。 3、勾股定理的逆定理 如果三角形的三邊長a,b,c有關(guān)系,那么這個(gè)三角形是直角三角形。 【巧練】 題型一、勾股定理與直角三角形 例1.(20xx?大連)如圖,在△ABC中,∠C=90,AC=2,點(diǎn)D在BC上,∠ADC=2∠B,AD=,則BC的長為( ?。? A.﹣1 B. +1 C.﹣1 D. +1 【答案】D 【分析】根據(jù)∠ADC=2∠B,∠ADC=∠B+∠BAD判斷出DB=DA,根據(jù)勾股定理求出DC的長,從而求出BC的長. 【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD, ∴∠B=∠DAB, ∴DB=DA=, 在Rt△ADC中, DC===1; ∴BC=+1. 故選D. 【點(diǎn)評】本題主要考查了勾股定理,同時(shí)涉及三角形外角的性質(zhì),二者結(jié)合,是一道好題. 例2.(20xx?市)下列各組數(shù)據(jù)中的三個(gè)數(shù)作為三角形的邊長,其中能構(gòu)成直角三角形的是( ?。? A.,, B.1,, C.6,7,8 D.2,3,4 【答案】B 【分析】知道三條邊的大小,用較小的兩條邊的平方和與最大的邊的平方比較,如果相等,則三角形為直角三角形;否則不是. 【解答】解:A、()2+()2≠()2,不能構(gòu)成直角三角形,故錯誤; B、12+()2=()2,能構(gòu)成直角三角形,故正確; C、62+72≠82,不能構(gòu)成直角三角形,故錯誤; D、22+32≠42,不能構(gòu)成直角三角形,故錯誤. 故選:B. 【點(diǎn)評】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可. 題型二、幾何圖形表面最短路徑 例3.(20xx?甘肅慶陽)在底面直徑為2cm,高為3cm的圓柱體側(cè)面上,用一條無彈性的絲帶從A至C按如圖所示的圈數(shù)纏繞,則絲帶的最短長度為 cm.(結(jié)果保留π) 【答案】 【分析】: 根據(jù)繞兩圈到C,則展開后相當(dāng)于求出直角三角形ACB的斜邊長,并且AB的長為圓柱的底面圓的周長,BC的長為圓柱的高,根據(jù)勾股定理求出即可. 解答: 解:如圖所示, ∵無彈性的絲帶從A至C, ∴展開后AB=2πcm,BC=3cm, 由勾股定理得:AC==cm. 故答案為:. 點(diǎn)評: 本題考查了平面展開﹣?zhàn)疃搪肪€問題和勾股定理的應(yīng)用,能正確畫出圖形是解此題的關(guān)鍵,用了數(shù)形結(jié)合思想. 題型三、含30角的直角三角形的運(yùn)用 例4.(20xx?市)如圖,在△ABC中,∠C=90,∠B=30,AD平分∠CAB,交BC于點(diǎn)D,若CD=1,則BD= ?。? 【答案】2 【分析】: 根據(jù)角平分線性質(zhì)求出∠BAD的度數(shù),根據(jù)含30度角的直角三角形性質(zhì)求出AD即可得BD. 解答: 解:∵∠C=90,∠B=30, ∴∠CAB=60, AD平分∠CAB, ∴∠BAD=30, ∴BD=AD=2CD=2, 故答案為2. 【點(diǎn)評】: 本題考查了對含30度角的直角三角形的性質(zhì)和角平分線性質(zhì)的應(yīng)用,求出AD的長是解此題的關(guān)鍵. 題型四、直角三角形斜邊中線的應(yīng)用 例5. (20xx?江蘇宿遷)如圖,在Rt△ABC中,∠ACB=90,點(diǎn)D,E,F(xiàn)分別為AB,AC,BC的中點(diǎn).若CD=5,則EF的長為 ?。? 【答案】5 【分析】已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半. 解答: 解:∵△ABC是直角三角形,CD是斜邊的中線, ∴CD=AB, 又∵EF是△ABC的中位線, ∴AB=2CD=25=10cm, ∴EF=10=5cm. 故答案為:5. 【點(diǎn)評】: 此題主要考查了三角形中位線定理以及直角三角形斜邊上的中線等知識,用到的知識點(diǎn)為:(1)直角三角形斜邊的中線等于斜邊的一半;(2)三角形的中位線等于對應(yīng)邊的一半. 【限時(shí)突破】 1.(20xx?臺州)如圖,數(shù)軸上點(diǎn)A,B分別對應(yīng)1,2,過點(diǎn)B作PQ⊥AB,以點(diǎn)B為圓心,AB長為半徑畫弧,交PQ于點(diǎn)C,以原點(diǎn)O為圓心,OC長為半徑畫弧,交數(shù)軸于點(diǎn)M,則點(diǎn)M對應(yīng)的數(shù)是( ) A. B. C. D. 2.(20xx?市)下列各組數(shù)據(jù)中的三個(gè)數(shù)作為三角形的邊長,其中能構(gòu)成直角三角形的是( ) A.,, B.1,, C.6,7,8 D.2,3,4 3.(20xx?青島)如圖,在△ABC中,∠C=90,∠B=30,AD是△ABC的角平分線,DE⊥AB,垂足為E,DE=1,則BC=( ?。? A. B. 2 C. 3 D. +2 4.(20xx江蘇連云港)如圖1,分別以直角三角形三邊為邊向外作等邊三角形,面積分別為S1、S2、S3;如圖2,分別以直角三角形三個(gè)頂點(diǎn)為圓心,三邊長為半徑向外作圓心角相等的扇形,面積分別為S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,則S3+S4=( ?。? A.86 B.64 C.54 D.48 5. (20xx四川達(dá)州3分)如圖,在55的正方形網(wǎng)格中,從在格點(diǎn)上的點(diǎn)A,B,C,D中任取三點(diǎn),所構(gòu)成的三角形恰好是直角三角形的概率為( ?。? 6.(20xx?市)如圖,∠ACB=9O,D為AB中點(diǎn),連接DC并延長到點(diǎn)E,使CE=CD,過點(diǎn)B作BF∥DE交AE的延長線于點(diǎn)F.若BF=10,則AB的長為 . 7.(20xx?棗莊)如圖,△ABC中,CD⊥AB于D,E是AC的中點(diǎn).若AD=6,DE=5,則CD的長等于 ?。? 8. (20xx?東營,)如圖,一只螞蟻沿著邊長為2的正方體表面從點(diǎn)A出發(fā),經(jīng)過3個(gè)面爬到點(diǎn)B,如果它運(yùn)動的路徑是最短的,則AC的長為 ?。? 【答案解析】 1.【分析】直接利用勾股定理得出OC的長,進(jìn)而得出答案. 【解答】解:如圖所示:連接OC, 由題意可得:OB=2,BC=1, 則AC==, 故點(diǎn)M對應(yīng)的數(shù)是:. 故選:B. 2.【分析】知道三條邊的大小,用較小的兩條邊的平方和與最大的邊的平方比較,如果相等,則三角形為直角三角形;否則不是. 【解答】解:A、()2+()2≠()2,不能構(gòu)成直角三角形,故錯誤; B、12+()2=()2,能構(gòu)成直角三角形,故正確; C、62+72≠82,不能構(gòu)成直角三角形,故錯誤; D、22+32≠42,不能構(gòu)成直角三角形,故錯誤. 故選:B. 【點(diǎn)評】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可. 【點(diǎn)評】此題主要考查了勾股定理,根據(jù)題意得出CO的長是解題關(guān)鍵. 3.分析: 根據(jù)角平分線的性質(zhì)即可求得CD的長,然后在直角△BDE中,根據(jù)30的銳角所對的直角邊等于斜邊的一半,即可求得BD長,則BC即可求得. 解答: 解:∵AD是△ABC的角平分線,DE⊥AB,∠C=90, ∴CD=DE=1, 又∵直角△BDE中,∠B=30, ∴BD=2DE=2, ∴BC=CD+BD=1+2=3. 故選C. 點(diǎn)評: 本題考查了角的平分線的性質(zhì)以及直角三角形的性質(zhì),30的銳角所對的直角邊等于斜邊的一半,理解性質(zhì)定理是關(guān)鍵. 4.【分析】分別用AB、BC和AC表示出 S1、S2、S3,然后根據(jù)AB2=AC2+BC2即可得出S1、S2、S3的關(guān)系.同理,得出S4、S5、S6的關(guān)系. 【解答】解:如圖1,S1=AC2,S2=BC2,S3=AB2. ∵AB2=AC2+BC2, ∴S1+S2=AC2+BC2=AB2=S3, 如圖2,S4=S5+S6, ∴S3+S4=16+45+11+14=86. 故選A. 5.【分析】從點(diǎn)A,B,C,D中任取三點(diǎn),找出所有的可能,以及能構(gòu)成直角三角形的情況數(shù),即可求出所求的概率. 【解答】解:∵從點(diǎn)A,B,C,D中任取三點(diǎn)能組成三角形的一共有4種可能,其中△ABD,△ADC,△ABC是直角三角形, ∴所構(gòu)成的三角形恰好是直角三角形的概率為. 故選D. 6.分析: 先根據(jù)點(diǎn)D是AB的中點(diǎn),BF∥DE可知DE是△ABF的中位線,故可得出DE的長,根據(jù)CE=CD可得出CD的長,再根據(jù)直角三角形的性質(zhì)即可得出結(jié)論. 解答: 解:∵點(diǎn)D是AB的中點(diǎn),BF∥DE, ∴DE是△ABF的中位線. ∵BF=10, ∴DE=BF=5. ∵CE=CD, ∴CD=5,解得CD=4. ∵△ABC是直角三角形, ∴AB=2CD=8. 故答案為:8. 點(diǎn)評: 本題考查的是三角形中位線定理,熟知三角形的中位線平行于第三邊,并且等于第三邊的一半是解答此題的關(guān)鍵. 7.分析: 由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可. 解答: 解:如圖,∵△ABC中,CD⊥AB于D,E是AC的中點(diǎn),DE=5, ∴DE=AC=5, ∴AC=10. 在直角△ACD中,∠ADC=90,AD=6,AC=10,則根據(jù)勾股定理,得 CD===8. 故答案是:8. 點(diǎn)評: 本題考查了勾股定理,直角三角形斜邊上的中線.利用直角三角形斜邊上的中線等于斜邊的一半求得AC的長度是解題的難點(diǎn). 8.分析: 將正方體展開,右邊與后面的正方形與前面正方形放在一個(gè)面上,此時(shí)AB最短,根據(jù)三角形MCB與三角形ACN相似,由相似得比例得到MC=2NC,求出CN的長,利用勾股定理求出AC的長即可. 解答: 解:將正方體展開,右邊與后面的正方形與前面正方形放在一個(gè)面上,展開圖如圖所示,此時(shí)AB最短, ∵△BCM∽△ACN, ∴=,即==2,即MC=2NC, ∴CN=MN=, 在Rt△ACN中,根據(jù)勾股定理得:AC==, 故答案為:. 點(diǎn)評: 此題考查了平面展開﹣?zhàn)疃搪窂絾栴},涉及的知識有:相似三角形的判定與性質(zhì),勾股定理,熟練求出CN的長是解本題的關(guān)鍵. 12 / 12- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
6 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考 數(shù)學(xué) 精學(xué)巧練 備考 秘籍 圖形 性質(zhì) 24 課時(shí) 直角三角形 勾股定理
鏈接地址:http://weibangfood.com.cn/p-3075112.html