2018-2019版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.1 回歸分析的基本思想及其初步應(yīng)用學(xué)案 新人教A版選修2-3.doc
《2018-2019版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.1 回歸分析的基本思想及其初步應(yīng)用學(xué)案 新人教A版選修2-3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.1 回歸分析的基本思想及其初步應(yīng)用學(xué)案 新人教A版選修2-3.doc(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3.1 回歸分析的基本思想及其初步應(yīng)用 學(xué)習(xí)目標(biāo) 1.了解隨機(jī)誤差、殘差、殘差圖的概念.2.會(huì)通過(guò)分析殘差判斷線性回歸模型的擬合效果.3.掌握建立線性回歸模型的步驟. 知識(shí)點(diǎn)一 線性回歸模型 思考 某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如下表: 推銷員編號(hào) 1 2 3 4 5 工作年限x/年 3 5 6 7 9 推銷金額y/萬(wàn)元 2 3 3 4 5 請(qǐng)問(wèn)如何表示推銷金額y與工作年限x之間的相關(guān)關(guān)系?y關(guān)于x的線性回歸方程是什么? 答案 畫出散點(diǎn)圖,由圖可知,樣本點(diǎn)散布在一條直線附近,因此可用回歸直線表示變量之間的相關(guān)關(guān)系. 設(shè)所求的線性回歸方程為=x+, 則===0.5, =-=0.4. 所以年推銷金額y關(guān)于工作年限x的線性回歸方程為=0.5x+0.4. 梳理 (1)函數(shù)關(guān)系是一種確定性關(guān)系,而相關(guān)關(guān)系是一種非確定性關(guān)系. (2)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法. (3)對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),回歸直線y=bx+a的斜率和截距的最小二乘估計(jì)公式分別為==,=- ,其中(,)稱為樣本點(diǎn)的中心. (4)線性回歸模型y=bx+a+e,其中a和b是模型的未知參數(shù),e稱為隨機(jī)誤差,自變量x稱為解釋變量,因變量y稱為預(yù)報(bào)變量. 知識(shí)點(diǎn)二 線性回歸分析 具有相關(guān)關(guān)系的兩個(gè)變量的線性回歸方程為=x+. 思考1 預(yù)報(bào)變量與真實(shí)值y一樣嗎? 答案 不一定. 思考2 預(yù)報(bào)值與真實(shí)值y之間誤差大了好還是小了好? 答案 越小越好. 梳理 (1)殘差平方和法 ①i=y(tǒng)i-i=y(tǒng)i-xi- (i=1,2,…,n)稱為相應(yīng)于點(diǎn)(xi,yi)的殘差. ②殘差平方和(yi-i)2越小,模型的擬合效果越好. (2)殘差圖法 殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適.這樣的帶狀區(qū)域的寬度越窄,說(shuō)明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高. (3)利用相關(guān)指數(shù)R2刻畫回歸效果 其計(jì)算公式為:R2=1-,其幾何意義:R2越接近于1,表示回歸的效果越好. 知識(shí)點(diǎn)三 建立回歸模型的基本步驟 1.確定研究對(duì)象,明確哪個(gè)變量是解釋變量,哪個(gè)變量是預(yù)報(bào)變量. 2.畫出解釋變量和預(yù)報(bào)變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等). 3.由經(jīng)驗(yàn)確定回歸方程的類型(如觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程). 4.按一定規(guī)則(如最小二乘法)估計(jì)回歸方程中的參數(shù). 5.得出結(jié)果后分析殘差圖是否有異常(如個(gè)別數(shù)據(jù)對(duì)應(yīng)殘差過(guò)大,殘差呈現(xiàn)不隨機(jī)的規(guī)律性等).若存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等. 1.求線性回歸方程前可以不進(jìn)行相關(guān)性檢驗(yàn).( ) 2.在殘差圖中,縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號(hào).( √ ) 3.利用線性回歸方程求出的值是準(zhǔn)確值.( ) 類型一 求線性回歸方程 例1 某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù): x 6 8 10 12 y 2 3 5 6 (1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖; (2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+; (3)試根據(jù)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力. 考點(diǎn) 線性回歸方程 題點(diǎn) 求線性回歸方程 解 (1)如圖: (2)iyi=62+83+105+126=158, ==9, ==4, =62+82+102+122=344, ===0.7, =-=4-0.79=-2.3, 故線性回歸方程為=0.7x-2.3. (3)由(2)中線性回歸方程可知,當(dāng)x=9時(shí),=0.79-2.3=4,預(yù)測(cè)記憶力為9的同學(xué)的判斷力約為4. 反思與感悟 (1)求線性回歸方程的基本步驟 ①列出散點(diǎn)圖,從直觀上分析數(shù)據(jù)間是否存在線性相關(guān)關(guān)系. ②計(jì)算:,,,,iyi. ③代入公式求出=x+中參數(shù),的值. ④寫出線性回歸方程并對(duì)實(shí)際問(wèn)題作出估計(jì). (2)需特別注意的是,只有在散點(diǎn)圖大致呈線性時(shí),求出的回歸方程才有實(shí)際意義,否則求出的回歸方程毫無(wú)意義. 跟蹤訓(xùn)練1 假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)數(shù)據(jù): x 2 3 4 5 6 y 2.2 3.8 5.5 6.5 7.0 由此資料可知y對(duì)x呈線性相關(guān)關(guān)系. (1)求線性回歸方程; (2)求使用年限為10年時(shí),該設(shè)備的維修費(fèi)用為多少? 考點(diǎn) 線性回歸方程 題點(diǎn) 求線性回歸方程 解 (1)由上表中的數(shù)據(jù)可得 =4,=5,=90,iyi=112.3, ∴= ==1.23, ∴=-=5-1.234=0.08. ∴線性回歸方程為=1.23x+0.08. (2)當(dāng)x=10時(shí),=1.2310+0.08=12.38. 即使用年限為10年時(shí),該設(shè)備的維修費(fèi)用約為12.38萬(wàn)元. 類型二 回歸分析 例2 在一段時(shí)間內(nèi),某種商品的價(jià)格x元和需求量y件之間的一組數(shù)據(jù)為: x 14 16 18 20 22 y 12 10 7 5 3 求出y對(duì)x的線性回歸方程,并說(shuō)明擬合效果的程度. 考點(diǎn) 殘差分析與相關(guān)指數(shù) 題點(diǎn) 殘差及相關(guān)指數(shù)的應(yīng)用 解?。?14+16+18+20+22)=18, =(12+10+7+5+3)=7.4. =142+162+182+202+222=1 660, iyi=1412+1610+187+205+223=620, 可得回歸系數(shù)= ==-1.15, 所以=7.4+1.1518=28.1, 所以線性回歸方程為=-1.15x+28.1. 列出殘差表: yi-i 0 0.3 -0.4 -0.1 0.2 yi- 4.6 2.6 -0.4 -2.4 -4.4 則(yi-i)2=0.3,(yi-)2=53.2. R2=1-≈0.994. 所以回歸模型的擬合效果很好. 反思與感悟 (1)該類題屬于線性回歸問(wèn)題,解答此類題應(yīng)先通過(guò)散點(diǎn)圖來(lái)分析兩變量間的關(guān)系是否線性相關(guān),然后再利用求回歸方程的公式求解回歸方程,并利用殘差圖或相關(guān)指數(shù)R2來(lái)分析函數(shù)模型的擬合效果,在此基礎(chǔ)上,借助線性回歸方程對(duì)實(shí)際問(wèn)題進(jìn)行分析. (2)刻畫回歸效果的三種方法 ①殘差圖法,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi)說(shuō)明選用的模型比較合適. ②殘差平方和法:殘差平方和(yi-i)2越小,模型的擬合效果越好. ③相關(guān)指數(shù)法:R2=1-越接近1,表明回歸的效果越好. 跟蹤訓(xùn)練2 關(guān)于x與y有如下數(shù)據(jù): x 2 4 5 6 8 y 30 40 60 50 70 有如下的兩個(gè)線性模型:(1)=6.5x+17.5;(2)=7x+17.試比較哪一個(gè)擬合效果更好. 考點(diǎn) 殘差分析與相關(guān)指數(shù) 題點(diǎn) 殘差及相關(guān)指數(shù)的應(yīng)用 解 由(1)可得yi-i與yi-的關(guān)系如下表: yi-i -0.5 -3.5 10 -6.5 0.5 yi- -20 -10 10 0 20 ∴(yi-i)2=(-0.5)2+(-3.5)2+102+(-6.5)2+0.52=155, (yi-)2=(-20)2+(-10)2+102+02+202=1 000. ∴R=1-=1-=0.845. 由(2)可得yi-i與yi-的關(guān)系如下表: yi-i -1 -5 8 -9 -3 yi- -20 -10 10 0 20 ∴(yi-i)2=(-1)2+(-5)2+82+(-9)2+(-3)2=180, (yi-)2=(-20)2+(-10)2+102+02+202=1 000. ∴R=1-=1-=0.82. 由于R=0.845,R=0.82,0.845>0.82, ∴R>R. ∴(1)的擬合效果好于(2)的擬合效果. 例3 某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值. (xi-)2 (wi-)2 (xi-) (yi-) (wi-) (yi-) 46.6 563 6.8 289.8 1.6 1 469 108.8 表中wi=,=i. (1)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由) (2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程; (3)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問(wèn)題: ①年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少? ②年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大? 附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為 =,=- . 考點(diǎn) 非線性回歸分析 題點(diǎn) 非線性回歸分析 解 (1)由散點(diǎn)圖可以判斷,y=c+d適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型. (2)令w=,先建立y關(guān)于w的線性回歸方程. 由于===68, =-=563-686.8=100.6, 所以y關(guān)于w的線性回歸方程為=100.6+68w, 因此y關(guān)于x的回歸方程為=100.6+68. (3)①由(2)知,當(dāng)x=49時(shí), 年銷售量y的預(yù)報(bào)值=100.6+68=576.6, 年利潤(rùn)z的預(yù)報(bào)值=576.60.2-49=66.32. ②根據(jù)(2)的結(jié)果知,年利潤(rùn)z的預(yù)報(bào)值 =0.2(100.6+68)-x=-x+13.6+20.12. 所以當(dāng)==6.8, 即x=46.24時(shí),取得最大值. 故年宣傳費(fèi)為46.24千元時(shí),年利潤(rùn)的預(yù)報(bào)值最大. 反思與感悟 求非線性回歸方程的步驟 (1)確定變量,作出散點(diǎn)圖. (2)根據(jù)散點(diǎn)圖,選擇恰當(dāng)?shù)臄M合函數(shù). (3)變量置換,通過(guò)變量置換把非線性回歸問(wèn)題轉(zhuǎn)化為線性回歸問(wèn)題,并求出線性回歸方程. (4)分析擬合效果:通過(guò)計(jì)算相關(guān)指數(shù)或畫殘差圖來(lái)判斷擬合效果. (5)根據(jù)相應(yīng)的變換,寫出非線性回歸方程. 跟蹤訓(xùn)練3 在一次抽樣調(diào)查中測(cè)得樣本的5個(gè)樣本點(diǎn),數(shù)值如下表: x 0.25 0.5 1 2 4 y 16 12 5 2 1 試建立y與x之間的回歸方程. 考點(diǎn) 非線性回歸分析 題點(diǎn) 非線性回歸分析 解 由數(shù)值表可作散點(diǎn)圖如圖, 根據(jù)散點(diǎn)圖可知y與x近似地呈反比例函數(shù)關(guān)系, 設(shè)=,令t=,則=kt,原數(shù)據(jù)變?yōu)椋? t 4 2 1 0.5 0.25 y 16 12 5 2 1 由置換后的數(shù)值表作散點(diǎn)圖如下: 由散點(diǎn)圖可以看出y與t呈近似的線性相關(guān)關(guān)系,列表如下: i ti yi tiyi t 1 4 16 64 16 2 2 12 24 4 3 1 5 5 1 4 0.5 2 1 0.25 5 0.25 1 0.25 0.062 5 ∑ 7.75 36 94.25 21.312 5 所以=1.55,=7.2. 所以=≈4.134 4, =-≈0.8. 所以=4.134 4t+0.8. 所以y與x之間的回歸方程是=+0.8. 1.下列兩個(gè)變量之間的關(guān)系不是函數(shù)關(guān)系的是( ) A.角度和它的余弦值 B.正方形的邊長(zhǎng)和面積 C.正n邊形的邊數(shù)和內(nèi)角度數(shù)和 D.人的年齡和身高 考點(diǎn) 回歸分析 題點(diǎn) 回歸分析的概念和意義 答案 D 解析 函數(shù)關(guān)系就是變量之間的一種確定性關(guān)系.A,B,C三項(xiàng)中的兩個(gè)變量之間都是函數(shù)關(guān)系,可以寫出相應(yīng)的函數(shù)表達(dá)式,分別為f(θ)=cos θ,g(a)=a2,h(n)=(n-2)π.D選項(xiàng)中的兩個(gè)變量之間不是函數(shù)關(guān)系,對(duì)于年齡確定的人群,仍可以有不同的身高,故選D. 2.設(shè)有一個(gè)線性回歸方程=2-1.5x,當(dāng)變量x增加1個(gè)單位時(shí)( ) A.y平均增加1.5個(gè)單位 B.y平均增加2個(gè)單位 C.y平均減少1.5個(gè)單位 D.y平均減少2個(gè)單位 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 C 解析 由回歸方程中兩個(gè)變量之間的關(guān)系可以得到. 3.如圖四個(gè)散點(diǎn)圖中,適合用線性回歸模型擬合其中兩個(gè)變量的是( ) A.①② B.①③ C.②③ D.③④ 考點(diǎn) 回歸分析 題點(diǎn) 回歸分析的概念和意義 答案 B 解析 由圖易知①③兩個(gè)圖中樣本點(diǎn)在一條直線附近,因此適合用線性回歸模型. 4.某產(chǎn)品在某零售攤位的零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)資料如下表所示: x 16 17 18 19 y 50 34 41 31 由上表可得回歸直線方程=x+中的=-5,據(jù)此模型預(yù)測(cè)當(dāng)零售價(jià)為14.5元時(shí),每天的銷售量為( ) A.51個(gè) B.50個(gè) C.54個(gè) D.48個(gè) 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 C 解析 由題意知=17.5,=39,代入回歸直線方程得=126.5,126.5-14.55=54,故選C. 5.已知x,y之間的一組數(shù)據(jù)如下表: x 0 1 2 3 y 1 3 5 7 (1)分別計(jì)算:,,x1y1+x2y2+x3y3+x4y4,x+x+x+x; (2)已知變量x與y線性相關(guān),求出線性回歸方程. 考點(diǎn) 線性回歸方程 題點(diǎn) 求線性回歸方程 解 (1)==1.5,==4, x1y1+x2y2+x3y3+x4y4=01+13+25+37=34, x+x+x+x=02+12+22+32=14. (2)==2, =- =4-21.5=1, 故線性回歸方程為=2x+1. 回歸分析的步驟: (1)確定研究對(duì)象,明確哪個(gè)變量是解釋變量,哪個(gè)變量是預(yù)報(bào)變量; (2)畫出確定好的解釋變量和預(yù)報(bào)變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等); (3)由經(jīng)驗(yàn)確定回歸方程的類型(如果呈線性關(guān)系,則選用線性回歸方程=x+); (4)按一定規(guī)則估算回歸方程中的參數(shù); (5)得出結(jié)果后分析殘差圖是否有異常(個(gè)別數(shù)據(jù)對(duì)應(yīng)的殘差過(guò)大,或殘差呈現(xiàn)不隨機(jī)的規(guī)律性等),若存在異常,則檢查數(shù)據(jù)是否有誤或模型是否合適等. 一、選擇題 1.對(duì)于線性回歸方程=x+ (>0),下列說(shuō)法錯(cuò)誤的是( ) A.當(dāng)x增加一個(gè)單位時(shí),的值平均增加個(gè)單位 B.點(diǎn)(,)一定在=x+所表示的直線上 C.當(dāng)x=t時(shí),一定有y=t+ D.當(dāng)x=t時(shí),y的值近似為t+ 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 C 解析 線性回歸方程是一個(gè)模擬函數(shù),它表示的是一系列離散的點(diǎn)大致所在直線的位置及其大致變化規(guī)律,所以有些散點(diǎn)不一定在回歸直線上. 2.給定x與y的一組樣本數(shù)據(jù),求得相關(guān)系數(shù)r=-0.690,則( ) A.y與x的線性相關(guān)性很強(qiáng) B.y與x的相關(guān)性很強(qiáng) C.y與x正相關(guān) D.y與x負(fù)相關(guān) 考點(diǎn) 線性相關(guān)系數(shù) 題點(diǎn) 線性相關(guān)系數(shù)的應(yīng)用 答案 D 解析 因?yàn)閞<0,所以y與x負(fù)相關(guān),又|r|∈[0.75,1]才表示y與x具有很強(qiáng)的線性相關(guān)性,所以選D. 3.某校小賣部為了了解奶茶銷售量y(杯)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天賣出的奶茶杯數(shù)與當(dāng)天的氣溫,得到下表中的數(shù)據(jù),并根據(jù)該樣本數(shù)據(jù)用最小二乘法建立了線性回歸方程=-2x+60,則樣本數(shù)據(jù)中污損的數(shù)據(jù)y0應(yīng)為( ) 氣溫x(℃) -1 13 10 18 杯數(shù)y y0 34 38 24 A.58 B.64 C.62 D.60 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 B 解析 由表中數(shù)據(jù)易知=10,代入=-2x+60中,得=40.由=40,得y0=64. 4.已知變量x與y負(fù)相關(guān),且由觀測(cè)數(shù)據(jù)求得樣本平均數(shù)=3,=3.5,則由該觀測(cè)數(shù)據(jù)求得的線性回歸方程可能是( ) A.=-2x+9.5 B.=2x-2.4 C.=-0.3x-4.4 D.=0.4x+2.3 考點(diǎn) 線性回歸方程 題點(diǎn) 求線性回歸方程 答案 A 解析 因?yàn)樽兞縳與y負(fù)相關(guān),所以排除B,D,將樣本平均數(shù)=3,=3.5代入選項(xiàng)驗(yàn)證可知,選項(xiàng)A符合題意. 5.對(duì)變量x,y進(jìn)行回歸分析時(shí),依據(jù)得到的4個(gè)不同的回歸模型畫出殘差圖,則下列模型擬合精度最高的是( ) 考點(diǎn) 殘差分析與相關(guān)指數(shù) 題點(diǎn) 殘差及相關(guān)指數(shù)的應(yīng)用 答案 A 解析 用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高. 6.根據(jù)如下樣本數(shù)據(jù) x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0 得到的回歸方程為=x+,則( ) A.>0,>0 B.>0,<0 C.<0,>0 D.<0,<0 考點(diǎn) 線性回歸分析 題點(diǎn) 線性回歸方程的應(yīng)用 答案 B 解析 作出散點(diǎn)圖如下: 觀察圖象可知,回歸直線=x+的斜率<0, 當(dāng)x=0時(shí),=>0.故>0,<0. 7.已知某地的財(cái)政收入x與支出y滿足線性回歸方程y=bx+a+e(單位:億元),其中b=0.8,a=2,|e|≤0.5,如果今年該地區(qū)的財(cái)政收入為10億元,那么年支出預(yù)計(jì)不會(huì)超過(guò)( ) A.9億元 B.10億元 C.9.5億元 D.10.5億元 考點(diǎn) 殘差分析與相關(guān)指數(shù) 題點(diǎn) 殘差及相關(guān)指數(shù)的應(yīng)用 答案 D 解析 y=0.810+2+e=10+e≤10.5. 8.下列數(shù)據(jù)符合的函數(shù)模型為( ) x 1 2 3 4 5 6 7 8 9 10 y 2 2.69 3 3.38 3.6 3.8 4 4.08 4.2 4.3 A.y=2+x B.y=2ex C.y=2 D.y=2+ln x 考點(diǎn) 非線性回歸分析 題點(diǎn) 非線性回歸分析 答案 D 解析 分別將x值代入解析式判斷知滿足y=2+ln x. 9.為了考查兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩位同學(xué)各自獨(dú)立地做了100次和150次試驗(yàn),并且利用最小二乘法求得的回歸直線分別為l1和l2.已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)數(shù)據(jù)的平均值都是s,對(duì)變量y的觀測(cè)數(shù)據(jù)的平均值都是t,那么下列說(shuō)法中正確的是( ) A.l1與l2有交點(diǎn)(s,t) B.l1與l2相交,但交點(diǎn)不一定是(s,t) C.l1與l2必定平行 D.l1與l2必定重合 考點(diǎn) 線性回歸方程 題點(diǎn) 樣本點(diǎn)中心的應(yīng)用 答案 A 解析 回歸直線l1,l2都過(guò)樣本點(diǎn)的中心(s,t),但它們的斜率不確定,故選項(xiàng)A正確. 二、填空題 10.在一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散點(diǎn)圖中,若所有樣本點(diǎn)(xi,yi)(i=1,2,…,n)都在直線y=x+1上,則這組樣本數(shù)據(jù)的樣本相關(guān)系數(shù)為________. 考點(diǎn) 線性相關(guān)系數(shù) 題點(diǎn) 線性相關(guān)系數(shù)的應(yīng)用 答案 1 解析 根據(jù)樣本相關(guān)系數(shù)的定義可知,當(dāng)所有樣本點(diǎn)都在一條直線上時(shí),相關(guān)系數(shù)為1. 11.若一個(gè)樣本的總偏差平方和為80,殘差平方和為60,則相關(guān)指數(shù)R2為________. 考點(diǎn) 線性相關(guān)系數(shù) 題點(diǎn) 線性相關(guān)系數(shù)的應(yīng)用 答案 0.25 解析 R2=1-=0.25. 12.已知一個(gè)線性回歸方程為=1.5x+45,x∈{1,5,7,13,19},則=________. 考點(diǎn) 線性回歸方程 題點(diǎn) 樣本點(diǎn)中心的應(yīng)用 答案 58.5 解析 ∵==9,且=1.5x+45, ∴=1.59+45=58.5. 13.在研究?jī)蓚€(gè)變量的相關(guān)關(guān)系時(shí),觀察散點(diǎn)圖發(fā)現(xiàn)樣本點(diǎn)集中于某一條指數(shù)曲線y=ebx+a的周圍.令=ln y,求得線性回歸方程為=0.25x-2.58,則該模型的回歸方程為________. 考點(diǎn) 非線性回歸分析 題點(diǎn) 非線性回歸分析 答案 y=e0.25x-2.58 解析 因?yàn)椋?.25x-2.58,=ln y, 所以y=e0.25x-2.58. 三、解答題 14.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下: 零件的個(gè)數(shù)x(個(gè)) 2 3 4 5 加工的時(shí)間y(小時(shí)) 2.5 3 4 4.5 (1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖; (2)求出y關(guān)于x的線性回歸方程=x+,并在坐標(biāo)系中畫出回歸直線; (3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間? (注:=,=-) 考點(diǎn) 線性回歸方程 題點(diǎn) 求線性回歸方程 解 (1)散點(diǎn)圖如圖. (2)由表中數(shù)據(jù)得iyi=52.5, =3.5,=3.5,=54, 所以===0.7, 所以=- =3.5-0.73.5=1.05. 所以=0.7x+1.05. 回歸直線如圖中所示. (3)將x=10代入回歸直線方程,得=0.710+1.05=8.05, 所以預(yù)測(cè)加工10個(gè)零件需要8.05小時(shí). 四、探究與拓展 15.甲、乙、丙、丁4位同學(xué)各自對(duì)A,B兩變量進(jìn)行回歸分析,分別得到散點(diǎn)圖與殘差平方和(yi-i)2如下表: 甲 乙 丙 丁 散點(diǎn)圖 殘差平方和 115 106 124 103 以上的試驗(yàn)結(jié)果體現(xiàn)擬合A,B兩變量關(guān)系的模型擬合精度高的是( ) A.甲 B.乙 C.丙 D.丁 考點(diǎn) 殘差分析與相關(guān)指數(shù) 題點(diǎn) 殘差及相關(guān)指數(shù)的應(yīng)用 答案 D 解析 根據(jù)線性相關(guān)的知識(shí),散點(diǎn)圖中各樣本點(diǎn)條狀分布越均勻,同時(shí)保持殘差平方和越小(對(duì)于已經(jīng)獲取的樣本數(shù)據(jù),R2的表達(dá)式中(yi-)2為確定的數(shù),則殘差平方和越小,R2越大),由回歸分析建立的線性回歸模型的擬合效果越好,由試驗(yàn)結(jié)果知丁要好些. 16.為了研究某種細(xì)菌隨時(shí)間x變化繁殖個(gè)數(shù)y的變化情況,收集數(shù)據(jù)如下: 時(shí)間x(天) 1 2 3 4 5 6 繁殖個(gè)數(shù)y 6 12 25 49 95 190 (1)用時(shí)間作解釋變量,繁殖個(gè)數(shù)作預(yù)報(bào)變量作出這些數(shù)據(jù)的散點(diǎn)圖; (2)求y與x之間的回歸方程; (3)計(jì)算相關(guān)指數(shù)R2,并描述解釋變量與預(yù)報(bào)變量之間的關(guān)系. 考點(diǎn) 非線性回歸分析 題點(diǎn) 非線性回歸分析 解 (1)散點(diǎn)圖如圖所示: (2)由散點(diǎn)圖看出樣本點(diǎn)分布在一條指數(shù)曲線y=c1ec2x的周圍,于是令z=ln y,則 x 1 2 3 4 5 6 z 1.79 2.48 3.22 3.89 4.55 5.25 所以=0.69x+1.115,則有=e0.69x+1.115. (3) 6.08 12.12 24.17 48.18 96.06 191.52 y 6 12 25 49 95 190 =(yi-)2=4.816 1, (yi-)2≈-62≈24 642.83, R2=1-≈1-≈0.999 8, 即時(shí)間解釋了99.98%的細(xì)菌繁殖個(gè)數(shù)的變化.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019版高中數(shù)學(xué) 第三章 統(tǒng)計(jì)案例 3.1 回歸分析的基本思想及其初步應(yīng)用學(xué)案 新人教A版選修2-3 2018 2019 高中數(shù)學(xué) 第三 統(tǒng)計(jì) 案例 回歸 分析 基本 思想 及其 初步 應(yīng)用
鏈接地址:http://weibangfood.com.cn/p-6126727.html