購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢Q:1304139763
本科學(xué)生畢業(yè)設(shè)計(jì)
起亞獅跑驅(qū)動(dòng)橋設(shè)計(jì)
系部名稱: 汽車與交通工程學(xué)院
專業(yè)班級(jí): 車輛工程 B07-6班
學(xué)生姓名: 王龍君
指導(dǎo)教師: 王悅新
職 稱: 實(shí)驗(yàn)師
黑 龍 江 工 程 學(xué) 院
二○一一年六月
The Graduation Design for Bachelor's Degree
Design of ShiPao Rear Axle
Candidate:Wang Longjun
Specialty:Vehicle Engineering
Class:B07-6
Supervisor:Lectyrer Wang Yuexin
Heilongjiang Institute of Technology
2011-06·Harbin
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
摘 要
驅(qū)動(dòng)橋是汽車總成中的重要承載件之一,其性能直接影響整車的性能和有效使用壽命。一般由主減速器、差速器、半軸及橋殼四部分組成,其基本功用是增大由傳動(dòng)軸或直接由變速器傳來的轉(zhuǎn)矩,將轉(zhuǎn)矩分配給左、右車輪,并使左、右驅(qū)動(dòng)車輪具有汽車行駛運(yùn)動(dòng)學(xué)所要求的差速功能;此外,還要承受作用于路面和車架或車廂之間的鉛垂力、縱向力和橫向力。
本設(shè)計(jì)首先論述了驅(qū)動(dòng)橋的總體結(jié)構(gòu),在分析驅(qū)動(dòng)橋各部分結(jié)構(gòu)型式、發(fā)展過程及其以往形式的優(yōu)缺點(diǎn)的基礎(chǔ)上,確定了總體設(shè)計(jì)方案:采用整體式驅(qū)動(dòng)橋,主減速器的減速型式采用單級(jí)減速器,主減速器齒輪采用螺旋錐齒輪,差速器采用圓錐行星齒輪差速器,半軸采用全浮式型式,橋殼采用鑄造整體式橋殼。在本次設(shè)計(jì)中,主要完成了單級(jí)減速器、圓錐行星齒輪差速器、全浮式半軸的設(shè)計(jì)和橋殼的校核及材料選取等工作。
關(guān)鍵詞: 驅(qū)動(dòng)橋;單級(jí);主減速器;差器;齒輪;材料;計(jì)算機(jī)輔助設(shè)計(jì)
ABSTRACT
Driving axle assembly is one of the important vehicle carrying pieces and can directly impact on the whole vehicle's performance and its effective life. Driving Axle is consisted of Main Decelerator, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead.
The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Single Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle, the checking of Axle Housing and the election of the material and so on.
Key words: Driving Axle;Single;Main Decelerator;Differential;Gear;Material;Computer Aided
Design
II
目 錄
摘要………………………………………………………………………………………...Ⅰ
Abstract ………………………….……………………………………………………......Ⅱ
第1章...................................................................................................................................1
1.1 選題的目的和意義. 1
1.2 研究現(xiàn)狀. 2
1.1.1 國(guó)內(nèi)現(xiàn)狀. 2
1.1.2 國(guó)外現(xiàn)狀. 2
1.3 驅(qū)動(dòng)橋的結(jié)構(gòu)和種類 4
1.3.1 汽車車橋的種類 4
1.3.2 驅(qū)動(dòng)橋的種類 4
1.3.3 驅(qū)動(dòng)橋結(jié)構(gòu)組成 5
1.4 完成主要內(nèi)容..........................................................................................................10
第2章 設(shè)計(jì)方案的確定 12
2.1 主要設(shè)計(jì)參數(shù) 12
2.2 主減速比的計(jì)算 12
2.3 主減速器結(jié)構(gòu)方案的確定 13
2.4 差速器結(jié)構(gòu)方案的確定 14
2.5 半軸型式的確定 15
2.6 橋殼型式的確定 15
2.7 本章小結(jié) 15
第3章 主減速器設(shè)計(jì) 16
3.1 主減速齒輪計(jì)算載荷的確定 16
3.2 主減速器齒輪參數(shù)的選擇 17
3.2.1 主減速器螺旋錐齒輪的幾何尺寸計(jì)算 18
3.2.2 主減速器螺旋錐齒輪的強(qiáng)度計(jì)算 20
3.3 主減速器齒輪的材料及熱處理 22
3.4 主減速器軸承的計(jì)算 23
3.5 主減速器的潤(rùn)滑 25
3.6 本章小結(jié)................................................................................................................ 26
第4章 差速器設(shè)計(jì) 27
4.1 差速器齒輪的基本參數(shù)選擇 27
4.2 差速器齒輪的幾何尺寸計(jì)算與強(qiáng)度計(jì)算 30
4.3 本章小結(jié) 33
第5章 半軸設(shè)計(jì) 34
5.1 全浮式半軸的設(shè)計(jì)計(jì)算 34
5.2 半軸的結(jié)構(gòu)設(shè)計(jì)及材料與熱處理 37
5.3 本章小結(jié).................................................................................................................37
第6章 驅(qū)動(dòng)橋橋殼的校核 38
6.1 橋殼的靜彎曲應(yīng)力計(jì)算 38
6.2 在不平路面沖擊載荷作用下橋殼的強(qiáng)度計(jì)算 39
6.3 汽車以最大牽引力行駛時(shí)的橋殼的強(qiáng)度計(jì)算 39
6.4 汽車緊急制動(dòng)時(shí)的橋殼強(qiáng)度計(jì)算 41
6.5 本章小結(jié).................................................................................................................42
第7章 ProE圖的制作過程 43
7.1 零件的制作過程 43
7.1.1 行星齒輪的制作過程 43
7.1.2 半軸齒輪的制作過程 44
7.1.3 主動(dòng)齒輪的制作過程 44
7.1.4 從動(dòng)齒輪的制作過程 45
7.1.5 差速器殼體的制作過程 45
7.1.6 十字軸的制作過程 46
7.2 零件的裝配 47
7.3 本章小結(jié) 49
結(jié)論......................................................................................................................................50
參考文獻(xiàn)............................................................................................................................ 51
致謝......................................................................................................................................52
附錄......................................................................................................................................53
第1章 緒 論
1.1選題的目的和意義
驅(qū)動(dòng)橋是汽車總成中的重要承載件之一,其性能直接影響整車的性能和有效使用壽命。驅(qū)動(dòng)橋一般由橋殼、主減速器、差速器和半殼等元件組成,轉(zhuǎn)向驅(qū)動(dòng)橋還包括各種等速聯(lián)軸節(jié),結(jié)構(gòu)更復(fù)雜,承載著汽車的滿載簧荷重及地面經(jīng)車輪、車架及承載式車身經(jīng)懸架給予的鉛垂力、縱向力、橫向力及其力矩,以及沖擊載荷;驅(qū)動(dòng)橋還傳遞著傳動(dòng)系中的最大轉(zhuǎn)矩,橋殼還承受著反作用力矩。汽車驅(qū)動(dòng)橋結(jié)構(gòu)型式和設(shè)計(jì)參數(shù)除對(duì)汽車的可靠性與耐久性有重要影響外,也對(duì)汽車的行駛性能如動(dòng)力性、經(jīng)濟(jì)性、平順性、通過性、機(jī)動(dòng)性和操動(dòng)穩(wěn)定性等有直接影響。汽車驅(qū)動(dòng)橋設(shè)計(jì)涉及的機(jī)械零部件及元件的品種極為廣泛,對(duì)這些零部件、元件及總成的制造也幾乎要設(shè)計(jì)到所有的現(xiàn)代機(jī)械制造工藝。因此,通過對(duì)汽車驅(qū)動(dòng)橋的學(xué)習(xí)和設(shè)計(jì),可以更好的學(xué)習(xí)并掌握現(xiàn)代汽車設(shè)計(jì)與機(jī)械設(shè)計(jì)的全面知識(shí)和技能。傳統(tǒng)設(shè)計(jì)是以生產(chǎn)經(jīng)驗(yàn)為基礎(chǔ),以運(yùn)用力學(xué)、數(shù)學(xué)和回歸方法形成的公式、圖表、手冊(cè)等為依據(jù)進(jìn)行的?,F(xiàn)代設(shè)計(jì)是傳統(tǒng)設(shè)計(jì)的深入、豐富和發(fā)展,而非獨(dú)立于傳統(tǒng)設(shè)計(jì)的全新設(shè)計(jì)。以計(jì)算機(jī)技術(shù)為核心,以設(shè)計(jì)理論為指導(dǎo),是現(xiàn)代設(shè)計(jì)的主要特征。利用這種方法指導(dǎo)設(shè)計(jì)可以減小經(jīng)驗(yàn)設(shè)計(jì)的盲目性和隨意性,提高設(shè)計(jì)的主動(dòng)性、科學(xué)性和準(zhǔn)確性。電子計(jì)算機(jī)的出現(xiàn)和在工程設(shè)計(jì)中的推廣應(yīng)用,使汽車設(shè)計(jì)技術(shù)飛躍發(fā)展,設(shè)計(jì)過程完全改觀。汽車結(jié)構(gòu)參數(shù)及性能參數(shù)等的優(yōu)化選擇與匹配,零部件的強(qiáng)度核算與壽命預(yù)測(cè),產(chǎn)品有關(guān)方面的模擬計(jì)算或仿真分析,都在計(jì)算機(jī)上進(jìn)行。這種利用計(jì)算機(jī)及其外部設(shè)備進(jìn)行產(chǎn)品設(shè)計(jì)的方法,統(tǒng)稱為計(jì)算機(jī)輔助設(shè)計(jì)(CAD)。計(jì)算機(jī)輔助設(shè)計(jì)的特點(diǎn):Pro/Engineer是美國(guó)PTC公司開發(fā)的一套機(jī)械CAD/CAE/CAM集成軟件,其技術(shù)領(lǐng)先,在機(jī)械、電子、航空、郵電、兵工、仿真等各行各業(yè)都有應(yīng)用,在CAD/CAE/CAM領(lǐng)域中處于領(lǐng)先地位。它集零件設(shè)計(jì)、大型組件設(shè)計(jì)、鈑金設(shè)計(jì)、造型設(shè)計(jì)、模具開發(fā)、數(shù)控加工、運(yùn)動(dòng)分析、有限元分析、數(shù)據(jù)庫(kù)管理等功能于一身,具有參數(shù)化設(shè)計(jì),特征驅(qū)動(dòng),單一數(shù)據(jù)庫(kù)等特點(diǎn),大大加快了產(chǎn)品開發(fā)速度。隨著計(jì)算機(jī)在汽車設(shè)計(jì)中的推廣應(yīng)用,一些近代的數(shù)學(xué)物理方法和基礎(chǔ)理論方面的新成就,在汽車設(shè)計(jì)中也日益得到廣泛應(yīng)用?,F(xiàn)代汽車設(shè)計(jì),除傳統(tǒng)的方法和計(jì)算機(jī)輔助設(shè)計(jì)方法外,還引進(jìn)了最優(yōu)化設(shè)計(jì)、可靠性設(shè)計(jì)、有限元分析、計(jì)算機(jī)模擬計(jì)算或仿真分析、模態(tài)分析等現(xiàn)代設(shè)計(jì)剛方法于分析手段,甚至還引進(jìn)了雷達(dá)防撞、衛(wèi)星導(dǎo)航、智能化電子儀表及顯示系統(tǒng)等新技術(shù)。
計(jì)算機(jī)輔助設(shè)計(jì)與以前的設(shè)計(jì)發(fā)展相比有明顯優(yōu)勢(shì),減少了設(shè)計(jì)、計(jì)算、制圖、制表所需的時(shí)間,縮短了設(shè)計(jì)周期。有利于發(fā)揮設(shè)計(jì)人員的創(chuàng)造性,將他們從大量簡(jiǎn)單、繁瑣的重復(fù)勞動(dòng)中解放出來,由于采用了計(jì)算機(jī)輔助分析技術(shù),可以從多方案中進(jìn)行分析、比較,選出最佳方案,有利于實(shí)現(xiàn)設(shè)計(jì)方案的優(yōu)化,有利于實(shí)現(xiàn)產(chǎn)品的標(biāo)準(zhǔn)化、通用化和系列化,減少了零件在車間的流通時(shí)間和在機(jī)床上裝卸、調(diào)整、測(cè)量、等切削的時(shí)間,提高了加工效率,先進(jìn)的生產(chǎn)設(shè)備既有較高的生產(chǎn)過程自動(dòng)化水平,有能在較大范圍內(nèi)適應(yīng)加工對(duì)象的變化,有利于企業(yè)提高應(yīng)變能力和市場(chǎng)競(jìng)爭(zhēng)力,計(jì)算機(jī)輔助設(shè)計(jì)的利用,是產(chǎn)品的設(shè)計(jì)、制造過程形成一個(gè)有機(jī)的整體,提高了產(chǎn)品的質(zhì)量和設(shè)計(jì)、生產(chǎn)的效率。未來計(jì)算機(jī)輔助設(shè)計(jì)會(huì)成為設(shè)計(jì)中不可缺少的一部分。
1.2研究現(xiàn)狀
1.2.1國(guó)內(nèi)現(xiàn)狀
我國(guó)驅(qū)動(dòng)橋制造企業(yè)的開發(fā)模式主要由測(cè)繪、引進(jìn)、自主開發(fā)三種組成。主要存在技術(shù)含量低,開發(fā)模式落后,技術(shù)創(chuàng)新力不夠,計(jì)算機(jī)輔助設(shè)計(jì)應(yīng)用少等問題。國(guó)內(nèi)的大多數(shù)中小企業(yè)中,測(cè)繪市場(chǎng)銷路較好的產(chǎn)品是它們的主要開發(fā)模式。特別是一些小型企業(yè)或民營(yíng)企業(yè)由于自身的技術(shù)含量低,開發(fā)資金的不足,專門測(cè)繪、仿制市場(chǎng)上銷售較旺的汽車的車橋售往我國(guó)不健全的配件市場(chǎng)。這種開發(fā)模式是無法從根本上提高我國(guó)驅(qū)動(dòng)橋產(chǎn)品開發(fā)水平的。中國(guó)驅(qū)動(dòng)橋產(chǎn)業(yè)發(fā)展過程中存在許多問題,許多情況不容樂觀,如產(chǎn)業(yè)結(jié)構(gòu)不合理、產(chǎn)業(yè)集中于勞動(dòng)力密集型產(chǎn)品;技術(shù)密集型產(chǎn)品明顯落后于發(fā)達(dá)工業(yè)國(guó)家;生產(chǎn)要素決定性作用正在削弱;產(chǎn)業(yè)能源消耗大、產(chǎn)出率低、環(huán)境污染嚴(yán)重、對(duì)自然資源破壞力大;企業(yè)總體規(guī)模偏小、技術(shù)創(chuàng)新能力薄弱、管理水平落后等。我國(guó)汽車驅(qū)動(dòng)橋的研究設(shè)計(jì)與世界先進(jìn)驅(qū)動(dòng)橋設(shè)計(jì)技術(shù)還有一定的差距,我國(guó)車橋制造業(yè)雖然有一些成果,但都是在引進(jìn)國(guó)外技術(shù)、仿制、再加上自己改進(jìn)的基礎(chǔ)上了取得的。個(gè)別比較有實(shí)力的企業(yè),雖有自己獨(dú)立的研發(fā)機(jī)構(gòu)但都處于發(fā)展的初期。我國(guó)驅(qū)動(dòng)橋產(chǎn)業(yè)正處在發(fā)展階段,在科技迅速發(fā)展的推動(dòng)下,高新技術(shù)在汽車領(lǐng)域的應(yīng)用和推廣,各種國(guó)外汽車新技術(shù)的引進(jìn),研究團(tuán)隊(duì)自身研發(fā)能力的提高,我國(guó)的驅(qū)動(dòng)橋設(shè)計(jì)和制造會(huì)逐漸發(fā)展起來,并跟上世界先進(jìn)的汽車零部件設(shè)計(jì)制造技術(shù)水平。
1.2.2國(guó)外現(xiàn)狀
國(guó)外驅(qū)動(dòng)橋主要采用模塊化技術(shù)和模態(tài)分析進(jìn)行驅(qū)動(dòng)橋的設(shè)計(jì)分析,模塊化設(shè)計(jì)是對(duì)在一定范圍內(nèi)的不同功能或相同功能不同性能、不同規(guī)格的機(jī)械產(chǎn)品進(jìn)行功能分析的基礎(chǔ)上,劃分并設(shè)計(jì)出一系列功能模塊,然后通過模塊的選擇和組合構(gòu)成不同產(chǎn)品的一種設(shè)計(jì)方法. 以DANA為代表的意大利企業(yè)多已采用了該類設(shè)計(jì)方法, 模態(tài)分析是對(duì)工程結(jié)構(gòu)進(jìn)行振動(dòng)分析研究的最先進(jìn)的現(xiàn)代方法與手段之一。它可以定義為對(duì)結(jié)構(gòu)動(dòng)態(tài)特性的解析分析(有限元分析)和實(shí)驗(yàn)分析(實(shí)驗(yàn)?zāi)B(tài)分析),其結(jié)構(gòu)動(dòng)態(tài)特性用模態(tài)參數(shù)來表征。模態(tài)分析技術(shù)的特點(diǎn)與優(yōu)點(diǎn)是在對(duì)系統(tǒng)做動(dòng)力學(xué)分析時(shí),用模態(tài)坐標(biāo)代替物理學(xué)坐標(biāo),從而可大大壓縮系統(tǒng)分析的自由度數(shù)目,分析精度較高。
優(yōu)點(diǎn)是減少設(shè)計(jì)及工裝制造的投入, 減少了零件種類, 提高規(guī)模生產(chǎn)程度, 降低制造費(fèi)用, 提高市場(chǎng)響應(yīng)速度等。國(guó)外企業(yè)位減少驅(qū)動(dòng)橋的振動(dòng)特性,對(duì)驅(qū)動(dòng)橋進(jìn)行模態(tài)分析,調(diào)整驅(qū)動(dòng)橋的強(qiáng)度,改善整車的舒適性和平順性。
20世紀(jì)60年代以來,由于電子計(jì)算機(jī)的迅速發(fā)展,有限元法在工程上獲得了廣泛應(yīng)用。有限元法不需要對(duì)所分析的結(jié)構(gòu)進(jìn)行嚴(yán)格的簡(jiǎn)化,既可以考慮各種計(jì)算要求和條件,也可以計(jì)算各種工況,而且計(jì)算精度高。有限元法將具有無限個(gè)自由度的連續(xù)體離散為有限個(gè)自由度的單元集合體,使問題簡(jiǎn)化為適合于數(shù)值解法的問題。只要確定了單元的力學(xué)特性,就可以按照結(jié)構(gòu)分析的方法求解,使分析過程大為簡(jiǎn)化,配以計(jì)算機(jī)就可以解決許多解析法無法解決的復(fù)雜工程問題。目前,有限元法己經(jīng)成為求解數(shù)學(xué)、物理、力學(xué)以及工程問題的一種有效的數(shù)值方法,也為驅(qū)動(dòng)橋殼設(shè)計(jì)提供了強(qiáng)有力的工具。驅(qū)動(dòng)橋的參數(shù)化設(shè)計(jì),參數(shù)化設(shè)計(jì)是指設(shè)計(jì)對(duì)象模型的尺寸用變量及其關(guān)系表示,而不需要確定具體數(shù)值,是CAD技術(shù)在實(shí)際應(yīng)用中提出的課題,它不僅可使CAD系統(tǒng)具有交互式繪圖功能,還具有自動(dòng)繪圖的功能。目前它是CAD技術(shù)應(yīng)用領(lǐng)域內(nèi)的一個(gè)重要的、且待進(jìn)一步研究的課題。利用參數(shù)化設(shè)計(jì)手段開發(fā)的專用產(chǎn)品設(shè)計(jì)系統(tǒng),可使設(shè)計(jì)人員從大量繁重而瑣碎的繪圖工作中解脫出來,可以大大提高設(shè)計(jì)速度,并減少信息的存儲(chǔ)量。未來的驅(qū)動(dòng)橋智能化控制系統(tǒng)已經(jīng)在汽車業(yè)得到了快速發(fā)展,現(xiàn)代汽車上使用的制動(dòng)防抱死控制、電子穩(wěn)定控制裝置、驅(qū)動(dòng)力控制系統(tǒng)等系統(tǒng)。驅(qū)動(dòng)力控制系統(tǒng)通過控制發(fā)動(dòng)機(jī)轉(zhuǎn)矩和汽車的制動(dòng)系統(tǒng)等手段來控制驅(qū)動(dòng)力,即在汽車起步,加速時(shí)減少驅(qū)動(dòng)力,防止驅(qū)動(dòng)力超過輪胎與路面的附著力而導(dǎo)致車輪空轉(zhuǎn)打滑,保持最佳的驅(qū)動(dòng)力,改善汽車的方向穩(wěn)定性和操縱性。另外,汽車電子控制系統(tǒng)和總線驅(qū)動(dòng)系統(tǒng)的迅速發(fā)展,如線控?fù)Q擋、線控轉(zhuǎn)向、線控制動(dòng)等的研究開發(fā)。概念車底盤—滑板結(jié)構(gòu)就是總線控制、燃料電池驅(qū)動(dòng)的,加上不同形狀車身的轎車,現(xiàn)在已經(jīng)開始啟動(dòng),通用公司宣傳,這種車有可能在未來10年上市。當(dāng)線控這一目標(biāo)實(shí)現(xiàn)時(shí),汽車將是一種完全的高新技術(shù)產(chǎn)品,發(fā)動(dòng)機(jī)、變速器、傳動(dòng)軸、驅(qū)動(dòng)橋、轉(zhuǎn)向機(jī)全都不見了,當(dāng)然四個(gè)輪子還是要的。到那時(shí),汽車就可以說是一臺(tái)裝在輪子上的計(jì)算機(jī)了。
1.3 驅(qū)動(dòng)橋的結(jié)構(gòu)和種類
1.3.1 汽車車橋的種類
車橋通過懸架與車架(或承載式車身)相連,它的兩端安裝車輪,其功用是傳遞車架(或承載式車身)于車輪之間各方向的作用力及其力矩。
根據(jù)懸架結(jié)構(gòu)的不同,車橋分為整體式和斷開式兩種。當(dāng)采用非獨(dú)立懸架時(shí),車橋中部是剛性的實(shí)心或空心梁,這種車橋即為整體式車橋;斷開式車橋?yàn)榛顒?dòng)關(guān)節(jié)式結(jié)構(gòu),與獨(dú)立懸架配用。
根據(jù)車橋上車輪的作用,車橋又可分為轉(zhuǎn)向橋、驅(qū)動(dòng)橋、轉(zhuǎn)向驅(qū)動(dòng)橋和支持橋四種類型。
1.3.2 驅(qū)動(dòng)橋的種類
驅(qū)動(dòng)橋作為汽車的重要的組成部分處于傳動(dòng)系的末端,其基本功用是增大由傳動(dòng)軸或直接由變速器傳來的轉(zhuǎn)矩,將轉(zhuǎn)矩分配給左、右驅(qū)動(dòng)車輪,并使左、石驅(qū)動(dòng)車輪具有汽車行駛運(yùn)動(dòng)學(xué)所要求的差速功能;同時(shí),驅(qū)動(dòng)橋還要承受作用于路面和車架或車廂之間的鉛垂力、縱向力和橫向力。
在一般的汽車結(jié)構(gòu)中、驅(qū)動(dòng)橋包括主減速器(又稱主傳動(dòng)器)、差速器、驅(qū)動(dòng)車輪的傳動(dòng)裝置及橋殼等部件如圖1.1所示。
1 2 3 4 5 6 7 8 9 10
圖1.1 驅(qū)動(dòng)橋
1.半軸 2.圓錐滾子軸承 3.支承螺栓 4.主減速器從動(dòng)錐齒輪 5.油封
6.主減速器主動(dòng)錐齒輪 7.彈簧座 8.墊圈 9.輪轂 10.調(diào)整螺母
對(duì)于各種不同類型和用途的汽車,正確地確定上述機(jī)件的結(jié)構(gòu)型式并成功地將它們組合成一個(gè)整體——驅(qū)動(dòng)橋,乃是設(shè)計(jì)者必須先解決的問題。
驅(qū)動(dòng)橋的結(jié)構(gòu)型式與驅(qū)動(dòng)車輪的懸掛型式密切相關(guān)。當(dāng)驅(qū)動(dòng)車輪采用非獨(dú)立懸掛時(shí),例如在絕大多數(shù)的載貨汽車和部分小轎車上,都是采用非斷開式驅(qū)動(dòng)橋;當(dāng)驅(qū)動(dòng)車輪采用獨(dú)立懸掛時(shí),則配以斷開式驅(qū)動(dòng)橋。
本次設(shè)計(jì)車型主減速比小于7.6,設(shè)計(jì)多采用單級(jí)減速器,它具有結(jié)構(gòu)簡(jiǎn)單、體積及質(zhì)量小且制造成本低等優(yōu)點(diǎn)。
1.3.3 驅(qū)動(dòng)橋結(jié)構(gòu)組成
1、主減速器
主減速器的結(jié)構(gòu)形式,主要是根據(jù)其齒輪類型、主動(dòng)齒輪和從動(dòng)齒輪的安裝
(1)主減速器齒輪的類型 在現(xiàn)代汽車驅(qū)動(dòng)橋中,主減速器采用得最廣泛的是螺旋錐齒輪和雙曲面齒輪。
螺旋錐齒輪如圖1.2(a)所示主、從動(dòng)齒輪軸線交于一點(diǎn),交角都采用90度。螺旋錐齒輪的重合度大,嚙合過程是由點(diǎn)到線,因此,螺旋錐齒輪能承受大的載荷,而且工作平穩(wěn),即使在高速運(yùn)轉(zhuǎn)時(shí)其噪聲和振動(dòng)也是很小的。
雙曲面齒輪如圖1.2(b)所示主、從動(dòng)齒輪軸線不相交而呈空間交叉。和螺旋錐齒輪相比,雙曲面齒輪的優(yōu)點(diǎn)有:
①尺寸相同時(shí),雙曲面齒輪有更大的傳動(dòng)比。
②傳動(dòng)比一定時(shí),如果主動(dòng)齒輪尺寸相同,雙曲面齒輪比螺旋錐齒輪有較大軸徑,較高的輪齒強(qiáng)度以及較大的主動(dòng)齒輪軸和軸承剛度。
圖1.2 螺旋錐齒輪與雙曲面齒輪
③當(dāng)傳動(dòng)比一定,主動(dòng)齒輪尺寸相同時(shí),雙曲面從動(dòng)齒輪的直徑較小,有較大的離地間隙。
④工作過程中,雙曲面齒輪副既存在沿齒高方向的側(cè)向滑動(dòng),又有沿齒長(zhǎng)方向的縱向滑動(dòng),這可以改善齒輪的磨合過程,使其具有更高的運(yùn)轉(zhuǎn)平穩(wěn)性。
雙曲面齒輪傳動(dòng)有如下缺點(diǎn):
①長(zhǎng)方向的縱向滑動(dòng)使摩擦損失增加,降低了傳動(dòng)效率。
②齒面間有大的壓力和摩擦功,使齒輪抗嚙合能力降低。
③雙曲面主動(dòng)齒輪具有較大的軸向力,使其軸承負(fù)荷增大。
④雙曲面齒輪必須采用可改善油膜強(qiáng)度和防刮傷添加劑的特種潤(rùn)滑油。
(2)主減速器主動(dòng)錐齒輪的支承形式及安裝方式的選擇 現(xiàn)在汽車主減速器主動(dòng)錐齒輪的支承形式有如下兩種:
①懸臂式 懸臂式支承結(jié)構(gòu)如圖1.3所示,其特點(diǎn)是在錐齒輪大端一側(cè)采用較長(zhǎng)的軸徑,其上安裝兩個(gè)圓錐滾子軸承。為了減小懸臂長(zhǎng)度a和增加兩端的距離b,以改善支承剛度,應(yīng)使兩軸承圓錐滾子向外。懸臂式支承結(jié)構(gòu)簡(jiǎn)單,支承剛度較差,多用于傳遞轉(zhuǎn)鉅較小的轎車、輕型貨車的單級(jí)主減速器及許多雙級(jí)主減速器中。
圖1.3 錐齒輪懸臂式支承
②騎馬式 騎馬式支承結(jié)構(gòu)如圖1.4所示,其特點(diǎn)是在錐齒輪的兩端均有軸承支承,這樣可大大增加支承剛度,又使軸承負(fù)荷減小,齒輪嚙合條件改善,在需要傳遞較大轉(zhuǎn)矩情況下,最好采用騎馬式支承。
圖1.4 主動(dòng)錐齒輪騎馬式支承
(3)從動(dòng)錐齒輪的支承方式和安裝方式的選擇 從動(dòng)錐齒輪的兩端支承多采用圓錐滾子軸承,安裝時(shí)應(yīng)使它們的圓錐滾子大端相向朝內(nèi),而小端相向朝外。為了防止從動(dòng)錐齒輪在軸向載荷作用下的偏移,圓錐滾子軸承應(yīng)用兩端的調(diào)整螺母調(diào)整。主減速器從動(dòng)錐齒輪采用無輻式結(jié)構(gòu)并用細(xì)牙螺釘以精度較高的緊配固定在差速器殼的凸緣上[5]。
(4)主減速器的軸承預(yù)緊及齒輪嚙合調(diào)整 支承主減速器的圓錐滾子軸承需預(yù)緊以消除安裝的原始間隙、磨合期間該間隙的增大及增強(qiáng)支承剛度。分析可知,當(dāng)軸向力于彈簧變形呈線性關(guān)系時(shí),預(yù)緊使軸向位移減小至原來的1/2。預(yù)緊力雖然可以增大支承剛度,改善齒輪的嚙合和軸承工作條件,但當(dāng)預(yù)緊力超過某一理想值時(shí),軸承壽命會(huì)急劇下降。主減速器軸承的預(yù)緊值可取為以發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩時(shí)換算所得軸向力的30%。
主動(dòng)錐齒輪軸承預(yù)緊度的調(diào)整采用套筒與墊片,從動(dòng)錐齒輪軸承預(yù)緊度的調(diào)整采用調(diào)整螺母。
(5)主減速器的減速形式 主減速器的減速形式分為單級(jí)減速(如圖2.5)、雙級(jí)減速、單級(jí)貫通、雙級(jí)貫通、主減速及輪邊減速等。減速形式的選擇與汽車的類型及使用條件有關(guān),有時(shí)也與制造廠的產(chǎn)品系列及制造條件有關(guān),但它主要取決于由動(dòng)力性、經(jīng)濟(jì)性等整車性能所要求的主減速比io的大小及驅(qū)動(dòng)橋下的離地間隙、驅(qū)動(dòng)橋的數(shù)目及布置形式等。通常單級(jí)減速器用于主減速比io≤7.6的各種中小型汽車上。
(a) 單級(jí)主減速器 (b) 雙級(jí)主減速器
圖1.5 主減速器
2、差速器
根據(jù)汽車行駛運(yùn)動(dòng)學(xué)的要求和實(shí)際的車輪、道路以及它們之間的相互聯(lián)系表明:汽車在行駛過程中左右車輪在同一時(shí)間內(nèi)所滾過的行程往往是有差別的。例如,拐彎時(shí)外側(cè)車輪行駛總要比內(nèi)側(cè)長(zhǎng)。另外,即使汽車作直線行駛,也會(huì)由于左右車輪在同一時(shí)間內(nèi)所滾過的路面垂向波形的不同,或由于左右車輪輪胎氣壓、輪胎負(fù)荷、胎面磨損程度的不同以及制造誤差等因素引起左右車輪外徑不同或滾動(dòng)半徑不相等而要求
車輪行程不等。在左右車輪行程不等的情況下,如果采用一根整體的驅(qū)動(dòng)車輪軸將動(dòng)力傳給左右車輪,則會(huì)由于左右車輪的轉(zhuǎn)速雖然相等而行程卻又不同的這一運(yùn)動(dòng)學(xué)上的矛盾,引起某一驅(qū)動(dòng)車輪產(chǎn)生滑轉(zhuǎn)或滑移。這不僅會(huì)是輪胎過早磨、無益地消耗功率和燃料及使驅(qū)動(dòng)車輪軸超載等,還會(huì)因?yàn)椴荒馨此蟮乃矔r(shí)中心轉(zhuǎn)向而使操縱性變壞。此外,由于車輪與路面間尤其在轉(zhuǎn)彎時(shí)有大的滑轉(zhuǎn)或滑移,易使汽車在轉(zhuǎn)向時(shí)失去抗側(cè)滑能力而使穩(wěn)定性變壞。為了消除由于左右車輪在運(yùn)動(dòng)學(xué)上的不協(xié)調(diào)而產(chǎn)生的這些弊病,汽車左右驅(qū)動(dòng)輪間都有差速器,后者保證了汽車驅(qū)動(dòng)橋兩側(cè)車輪在行程不等時(shí)具有以下不同速度旋轉(zhuǎn)的特性,從而滿足了汽車行駛運(yùn)動(dòng)學(xué)的要求。
差速器的結(jié)構(gòu)型式選擇,應(yīng)從所設(shè)計(jì)汽車的類型及其使用條件出發(fā),以滿足該型汽車在給定的使用條件下的使用性能要求。
差速器的結(jié)構(gòu)型式有多種,大多數(shù)汽車都屬于公路運(yùn)輸車輛,對(duì)于在公路上和市區(qū)行駛的汽車來說,由于路面較好,各驅(qū)動(dòng)車輪與路面的附著系數(shù)變化很小,因此幾乎都采用了結(jié)構(gòu)簡(jiǎn)單、工作平穩(wěn)、制造方便、用于公路汽車也很可靠的普通對(duì)稱式圓錐行星齒輪差速器,作為安裝在左、右驅(qū)動(dòng)車輪間的所謂輪間差速器使用;對(duì)于經(jīng)常行駛在泥濘、松軟土路或無路地區(qū)的越野汽車來說,為了防止因某一側(cè)驅(qū)動(dòng)車輪滑轉(zhuǎn)而陷車,則可采用防滑差速器。后者又分為強(qiáng)制鎖止式和自然鎖止式兩類。自鎖式差速器又有多種結(jié)構(gòu)式的高摩擦式和自由輪式的以及變傳動(dòng)比式的。
3、半軸
驅(qū)動(dòng)車輪的傳動(dòng)裝置置位于汽車傳動(dòng)系的末端,其功用是將轉(zhuǎn)矩由差速器半軸齒輪傳給驅(qū)動(dòng)車輪。在斷開式驅(qū)動(dòng)橋和轉(zhuǎn)向驅(qū)動(dòng)橋中,驅(qū)動(dòng)車輪的傳動(dòng)裝置包括半軸和萬向接傳動(dòng)裝置且多采用等速萬向節(jié)。在一般非斷開式驅(qū)動(dòng)橋上,驅(qū)動(dòng)車輪的傳動(dòng)裝置就是半軸,這時(shí)半軸將差速器半鈾齒輪與輪轂連接起來。在裝有輪邊減速器的驅(qū)動(dòng)橋上,半軸將半軸齒輪與輪邊減速器的主動(dòng)齒輪連接起來。
半浮式半軸具有結(jié)構(gòu)簡(jiǎn)單、質(zhì)量小、尺寸緊湊、造價(jià)低廉等優(yōu)點(diǎn)。主要用于質(zhì)量較小,使用條件好,承載負(fù)荷也不大的轎車和輕型載貨汽車。
3/4浮式半軸,因其側(cè)向力引起彎矩使軸承有歪斜的趨勢(shì),這將急劇降低軸承的壽命,故未得到推廣。
全浮式半軸工作可靠,廣泛應(yīng)用于輕型以上的各類汽車、越野車汽車和客車上,本設(shè)計(jì)采用此種半軸。
4、橋殼
驅(qū)動(dòng)橋橋殼是汽車上的主要零件之一,非斷開式驅(qū)動(dòng)橋的橋殼起著支承汽車荷重的作用,并將載荷傳給車輪。作用在驅(qū)動(dòng)車輪上的牽引力、制動(dòng)力、側(cè)向力和垂向力也是經(jīng)過橋殼傳到懸掛及車架或車廂上。因此橋完既是承載件又是傳力件,同時(shí)它又是主減速器、差速器及驅(qū)動(dòng)車輪傳動(dòng)裝置(如半軸)的外殼。
在汽車行駛過程中,橋殼承受繁重的載荷,設(shè)計(jì)時(shí)必須考慮在動(dòng)載荷下橋殼有足夠的強(qiáng)度和剛度。為了減小汽車的簧下質(zhì)量以利于降低動(dòng)載荷、提高汽車的行駛平順性,在保證強(qiáng)度和剛度的前提下應(yīng)力求減小橋殼的質(zhì)量。橋殼還應(yīng)結(jié)構(gòu)簡(jiǎn)單、制造方便以利于降低成本。其結(jié)構(gòu)還應(yīng)保證主減速器的拆裝、調(diào)整、維修和保養(yǎng)方便。在選擇橋殼的結(jié)構(gòu)型式時(shí),還應(yīng)考慮汽車的類型、使用要求、制造條件、材料供應(yīng)等。
結(jié)構(gòu)形式分類:可分式、整體式、組合式。
按制造工藝不同分類:
鑄造式——強(qiáng)度、剛度較大,但質(zhì)量大,加工面多,制造工藝復(fù)雜,本設(shè)計(jì)采用鑄造橋殼。
鋼板焊接沖壓式——質(zhì)量小,材料利用率高,制造成本低,適于大量生產(chǎn),轎車和中小型貨車,部分重型貨車。
1.4 完成主要內(nèi)容
(1) 完成驅(qū)動(dòng)橋的主減速器、差速器、半軸、驅(qū)動(dòng)橋橋殼的結(jié)構(gòu)形式選擇;
(2) 完成主減速器的基本參數(shù)選擇、設(shè)計(jì)計(jì)算和校核;
(3) 完成差速器的設(shè)計(jì)與計(jì)算和校核;
(4) 完成半軸的設(shè)計(jì)與計(jì)算和校核;
(5) 完成驅(qū)動(dòng)橋橋殼的受力分析及強(qiáng)度計(jì)算和校核;
(6) 用CAD軟件繪制裝配圖及主要零件圖。
第二章 設(shè)計(jì)方案的確定
2.1 設(shè)計(jì)主要參數(shù)
本次設(shè)計(jì)的任務(wù)是獅跑汽車后橋的設(shè)計(jì)。
技術(shù)參數(shù):
表2.1參考數(shù)據(jù)
序號(hào)
項(xiàng) 目
數(shù) 據(jù)
單 位
1
車身長(zhǎng)度
4350
mm
2
車身寬度
1800
mm
3
車身高度
1730
mm
4
車 重
1418
kg
5
軸 距
2630
mm
6
前輪距
1540
mm
7
后輪距
1540
mm
8
前胎規(guī)格
215/65 R16
—
9
排 量
2.0
L
10
最大功率/轉(zhuǎn)速
105/6000
kw/ rpm
11
最大轉(zhuǎn)矩/轉(zhuǎn)速
184/4500
N.m/ rpm
12
最高車速
171
km/h
13
最高檔傳動(dòng)比
0.782
—
14
級(jí) 別
SUV
—
15
離地間隙
200-250
mm
2.2 主減速比的計(jì)算
主減速比對(duì)主減速器的結(jié)構(gòu)形式、輪廓尺寸、質(zhì)量大小以及當(dāng)變速器處于最高檔位時(shí)汽車的動(dòng)力性和燃料經(jīng)濟(jì)性都有直接影響。的選擇應(yīng)在汽車總體設(shè)計(jì)時(shí)和傳動(dòng)系統(tǒng)的總傳動(dòng)比一起由整車動(dòng)力計(jì)算來確定。可利用在不同的下的功率平衡圖來計(jì)算對(duì)汽車動(dòng)力性的影響。通過優(yōu)化設(shè)計(jì),對(duì)發(fā)動(dòng)機(jī)與傳動(dòng)系參數(shù)作最佳匹配的方法來選擇值,可是汽車獲得最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。
為了得到足夠的功率而使最高車速稍有下降,一般選得比最小值大10%~25%,即按下式選擇:
=0.377=4.625 (2.1)
式中:——車輪的滾動(dòng)半徑215/65 R16 =[25.4+(1-)b]=0.334334(m)
輪輞直徑d=16英寸輪輞寬度b=215英寸,=0.4;
——最大功率時(shí)的發(fā)動(dòng)機(jī)轉(zhuǎn)速6000 rpm;
——汽車的最高車速171km/h;
——變速器最高擋傳動(dòng)比0.782;
——分動(dòng)器傳動(dòng)比1.223。
2.3 主減速器結(jié)構(gòu)方案的確定
(1)主減速器齒輪的類型 螺旋錐齒輪能承受大的載荷,而且工作平穩(wěn),即使在高速運(yùn)轉(zhuǎn)時(shí)其噪聲和振動(dòng)也是很小的。本次設(shè)計(jì)采用螺旋錐齒輪。
(2)主減速器主動(dòng)錐齒輪的支承形式及安裝方式的選擇
本次設(shè)計(jì)選用: 主動(dòng)錐齒輪:懸臂式支撐(圓錐滾子軸承)
從動(dòng)錐齒輪:跨置式支撐(圓錐滾子軸承)
(3)從動(dòng)錐齒輪的支承方式和安裝方式的選擇
從動(dòng)錐齒輪的兩端支承多采用圓錐滾子軸承,安裝時(shí)應(yīng)使它們的圓錐滾子大端相向朝內(nèi),而小端相向朝外。為了防止從動(dòng)錐齒輪在軸向載荷作用下的偏移,圓錐滾子軸承應(yīng)用兩端的調(diào)整螺母調(diào)整。主減速器從動(dòng)錐齒輪采用無輻式結(jié)構(gòu)并用細(xì)牙螺釘以精度較高的緊配固定在差速器殼的凸緣上。
(4)主減速器的軸承預(yù)緊及齒輪嚙合調(diào)整
支承主減速器的圓錐滾子軸承需預(yù)緊以消除安裝的原始間隙、磨合期間該間隙的增大及增強(qiáng)支承剛度。分析可知,當(dāng)軸向力于彈簧變形呈線性關(guān)系時(shí),預(yù)緊使軸向位移減小至原來的1/2。預(yù)緊力雖然可以增大支承剛度,改善齒輪的嚙合和軸承工作條件,但當(dāng)預(yù)緊力超過某一理想值時(shí),軸承壽命會(huì)急劇下降。主減速器軸承的預(yù)緊值可取為以發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩時(shí)換算所得軸向力的30%。
主動(dòng)錐齒輪軸承預(yù)緊度的調(diào)整采用調(diào)整螺母(利用軸承座實(shí)現(xiàn)),從動(dòng)錐齒輪軸承預(yù)緊度的調(diào)整采用調(diào)整螺母。
(5)主減速器的減速形式 主減速器的減速形式分為單級(jí)減速、雙級(jí)減速、單級(jí)貫通、雙級(jí)貫通、主減速及輪邊減速等。減速形式的選擇與汽車的類型及使用條件有關(guān),有時(shí)也與制造廠的產(chǎn)品系列及制造條件有關(guān),但它主要取決于由動(dòng)力性、經(jīng)濟(jì)性等整車性能所要求的主減速比的大小及驅(qū)動(dòng)橋下的離地間隙、驅(qū)動(dòng)橋的數(shù)目及布置形式等。
由于單級(jí)主減速器具有機(jī)構(gòu)簡(jiǎn)單、體積及質(zhì)量小且制造成本低等優(yōu)點(diǎn),因此廣泛用于主減速比小于7.6的各種中、小型汽車上,本設(shè)計(jì)汽車主減速比小于7.6 所以采用單級(jí)主減速器。
2.4 差速器結(jié)構(gòu)方案的確定
差速器的結(jié)構(gòu)型式選擇,應(yīng)從所設(shè)計(jì)汽車的類型及其使用條件出發(fā),以滿足該型汽車在給定的使用條件下的使用性能要求。
差速器的結(jié)構(gòu)型式有多種,大多數(shù)汽車都屬于公路運(yùn)輸車輛,對(duì)于在公路上和市區(qū)行駛的汽車來說,由于路面較好,各驅(qū)動(dòng)車輪與路面的附著系數(shù)變化很小,因此幾乎都采用了結(jié)構(gòu)簡(jiǎn)單、工作平穩(wěn)、制造方便、用于公路汽車也很可靠的普通對(duì)稱式圓錐行星齒輪差速器,作為安裝在左、右驅(qū)動(dòng)車輪間的所謂輪間差速器使用;對(duì)于經(jīng)常行駛在泥濘、松軟土路或無路地區(qū)的越野汽車來說,為了防止因某一側(cè)驅(qū)動(dòng)車輪滑轉(zhuǎn)而陷車,則可采用防滑差速器。后者又分為強(qiáng)制鎖止式和自然鎖止式兩類。自鎖式差速器又有多種結(jié)構(gòu)式的高摩擦式和自由輪式的以及變傳動(dòng)比式的。但對(duì)于本設(shè)計(jì)的車型來說只選用普通的對(duì)稱式圓錐行星齒輪差速器即可。
本次設(shè)計(jì)選用:圓錐行星齒輪差速器。
2.5 半軸型式的確定
3/4浮式半軸,因其側(cè)向力引起彎矩使軸承有歪斜的趨勢(shì),這將急劇降低軸承的壽命,故未得到推廣。全浮式半軸廣泛應(yīng)用于輕型以上的各類汽車上。本次設(shè)計(jì)選擇全浮式半軸。
2.6 橋殼型式的確定
整體式橋殼的特點(diǎn)是將整個(gè)橋殼制成一個(gè)整體,橋殼猶如一個(gè)整體的空心梁,其強(qiáng)度及剛度都比較好。且橋殼與主減速器殼分作兩體,主減速器齒輪及差速器均裝在獨(dú)立的主減速殼里,構(gòu)成單獨(dú)的總成,調(diào)整好后再由橋殼中部前面裝入橋殼內(nèi),并與橋殼用螺栓固定在一起。使主減速器和差速器的拆裝、調(diào)整、維修、保養(yǎng)等都十分方便。其主要缺點(diǎn)是橋殼不能做成復(fù)雜而理想的斷面,壁厚一定,故難于調(diào)整應(yīng)力分布。
鑄造式橋殼強(qiáng)度、剛度較大多用于越野車和重型貨車。
本次設(shè)計(jì)驅(qū)動(dòng)橋殼就選用鑄造式整體式橋殼。
2.7 本章小結(jié)
本章首先確定了主減速比,然后確定其它參數(shù)。對(duì)主減速器型式確定中主要從主減速器齒輪的類型、主減速器主動(dòng)錐齒輪的支承形式及安裝方式的選擇、從動(dòng)錐齒輪的支承方式和安裝方式的選擇、主減速器的軸承預(yù)緊及齒輪嚙合調(diào)整及主減速器的減速形式上得以確定從而逐步給出驅(qū)動(dòng)橋各個(gè)總成的基本結(jié)構(gòu),分析了驅(qū)動(dòng)橋各總成結(jié)構(gòu)組成。
第3章 主減速器設(shè)計(jì)
3.1 主減速齒輪計(jì)算載荷的確定
通常是將發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩配以傳動(dòng)系最低檔傳動(dòng)比時(shí)和驅(qū)動(dòng)車輪打滑時(shí)這兩種情況下作用于主減速器從動(dòng)齒輪上的轉(zhuǎn)矩()的較小者,作為載貨汽車計(jì)算中用以驗(yàn)算主減速器從動(dòng)齒輪最大應(yīng)力的計(jì)算載荷。即
/n=1642.86() (3.1) =2974.40() (3.2)
式中:——發(fā)動(dòng)機(jī)最大扭矩,N.m,本車取N.m;
——從發(fā)動(dòng)機(jī)到所計(jì)算的主減速器從動(dòng)齒輪之間的傳動(dòng)系最低檔傳動(dòng)比;
,已知;
ηT——上述傳動(dòng)部分的效率,取ηT=0.9;
K0——超載系數(shù),對(duì)于越野汽車及液力傳動(dòng)的各類汽車取K0=1;
n——該車的驅(qū)動(dòng)橋數(shù)目,本車取n=2;
G2——汽車滿載時(shí)一個(gè)驅(qū)動(dòng)橋給水平地面的最大負(fù)荷,取G2=8540.7N;
Φ——輪胎對(duì)路面的附著系數(shù),對(duì)于越野汽車,取Φ=1.0;
Rr——車輪的滾動(dòng)半徑,Rr=334.334mm;
ηlb,ilb——分別為由所計(jì)算的主減速器從動(dòng)齒輪到驅(qū)動(dòng)輪之間的傳動(dòng)效率和減速比;
ηLB=0.96,iLB=1。
由式(3.1),式(3.2)求得的計(jì)算載荷,是最大轉(zhuǎn)矉而不是正常持續(xù)轉(zhuǎn)矩,不能用它作為疲勞損壞依據(jù)。對(duì)于公路車輛來說,使用條件較非公路用?輆穩(wěn)定,其正常持續(xù)輬矩是根據(jù)所謂平均牽引力的值來確定的,即主加速器的平均計(jì)算轉(zhuǎn)矩為
==1215.82() (3.3)
式中:——汽車滿載總重,N;
——所牽引的掛車滿載總重,N,僅用于牽引車取=0;
——道路滾動(dòng)阻力系數(shù),通常取0.015~0.020,可初取 =0.018;
——汽車正常使用時(shí)的平均爬坡能力系數(shù)。通常取0.09~0.30,可初取=0.15;
——汽車性能系數(shù)
(3.4)
當(dāng) =26.86>16時(shí),取=0
3.2 主減速器齒輪參數(shù)的選擇
(1)齒數(shù)的選擇 根據(jù)主減速比確定:對(duì)于單級(jí)主減速器,當(dāng)i0較大時(shí),則應(yīng)盡量使主動(dòng)齒輪的齒數(shù)Z1取小些,以得到滿意的驅(qū)動(dòng)橋離地間隙[1]。
①.當(dāng)i0≥6時(shí),Z1的最小取值可取5,但為了嚙合平穩(wěn)及提高疲勞強(qiáng)度,Z1最好大于5;
②.當(dāng)i0較?。╥0=3.5~5)時(shí),Z1可取為7~12,但這時(shí)常會(huì)因?yàn)橹?、從齒輪齒數(shù)太多,尺寸太大而不能保證所要求的離地間隙;
③.為了磨合均勻,Z1、Z2之間應(yīng)避免有公約數(shù);
④.為了得到理想的齒面重疊系數(shù),Z1+ Z2應(yīng)≧50;
根據(jù)以上特點(diǎn)要求和本車的主減比,可確定主減速器主、從齒輪齒數(shù)z1 =10 z2 =43 。
(2)節(jié)圓直徑地選擇 根據(jù)從動(dòng)錐齒輪的計(jì)算轉(zhuǎn)矩(見式3.2,式3.3并取兩者中較小的一個(gè)為計(jì)算依據(jù))按經(jīng)驗(yàn)公式選出:
=177mm (3.5)
式中:
d2——從動(dòng)錐齒輪的節(jié)圓直徑,mm;
Kd2——直徑系數(shù),取K d2==13~16;
Tj——計(jì)算轉(zhuǎn)矩;取Tje與TjΦ中較小者:
(3)齒輪端面模數(shù)的選擇 選定后,可按式算出從動(dòng)齒輪大端模數(shù),并用下式校核
= 4.5
(4)齒面寬的選擇 汽車主減速器螺旋錐鼿輪鼿面寬度推薦為:
F=0.155=38.75mm,可初取F=30mm。
(5)螺旋錐齒輪螺旋方向 一般情況下主動(dòng)齒輪為左旋,從動(dòng)齒輪為右旋,以使二齒輪的軸向力有互相斥離的趨勢(shì)。
(6)螺旋角的選擇 格里森制推薦公式:。
在一般機(jī)械制造用的標(biāo)準(zhǔn)制中,螺旋角推薦用35°。
3.2.1 主減速器螺旋錐齒輪的幾何尺寸計(jì)算
主減速器錐齒輪的幾何尺寸計(jì)算見表
表3.1 主減速器錐齒輪的幾何尺寸計(jì)算用表
序號(hào)
項(xiàng) 目
計(jì) 算 公 式
計(jì) 算 結(jié) 果
1
主動(dòng)齒輪齒數(shù)
10
2
從動(dòng)齒輪齒數(shù)
43
3
模數(shù)
4.5
4
齒面寬
F
F=30㎜
5
工作齒高
7.245
6
全齒高
=8.046
7
法向壓力角
=16°
8
軸交角
EMBED Aquation.3 =90°
9
節(jié)圓直徑
=
45㎜
=193.5㎜
10
節(jié)錐角
arctan
=90°-
=13.091°
=76.908°
11
節(jié)錐距
A==
A=100㎜
12
周節(jié)
t=3.1416
t=14.137㎜
13
齒頂高
=6.075mm
=1.125mm
14
齒根高
=
=1.971mm
=6.921mm
15
徑向間隙
c=
c=0.846㎜
16
齒根角
=1.1348°
=3.9289°
17
面錐角
;
=17.06995°
=3.9289°
18
根錐角
=
=
=11.12°
=72.9291°
19
齒頂圓直徑
=
=56.83424㎜
=194.0096㎜
20
節(jié)錐頂點(diǎn)止齒輪外緣距離
=95.374㎜
=21.404㎜
21
理論弧齒厚
=27.38mm
=3.9915mm
22
齒側(cè)間隙
B=0.102~0.152
0.125mm
23
螺旋角
=35°
24
螺旋方向
在一般的情況下主動(dòng)齒輪為左旋,從動(dòng)齒輪為右旋,以使二齒輪的軸向力有相互斥離的趨勢(shì)
主動(dòng)齒輪為左旋,從動(dòng)齒輪為右旋
25
驅(qū)動(dòng)齒輪
小齒輪
小齒輪
26
驅(qū)動(dòng)方向
向齒輪背面看去,通常主動(dòng)齒輪為順時(shí)針,從動(dòng)齒輪為反時(shí)針
主動(dòng)齒輪為順時(shí)針,從動(dòng)齒輪為反時(shí)針
3.2.2 主減速器螺旋錐齒輪的強(qiáng)度計(jì)算
在完成主減速器齒輪的幾何計(jì)算之后,應(yīng)對(duì)其強(qiáng)度進(jìn)行計(jì)算,以保證其有足夠的強(qiáng)度和壽命以及安全可靠性地工作。在進(jìn)行強(qiáng)度計(jì)算之前應(yīng)首先了解齒輪的破壞形式及其影響因素。
螺旋錐齒輪的強(qiáng)度計(jì)算:
(1)主減速器螺旋錐齒輪的強(qiáng)度計(jì)算
①單位齒長(zhǎng)上的圓周力
(3.6)
式中:——單位齒長(zhǎng)上的圓周力,N/mm;
F——作用在齒輪上的圓周力,N,按發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩和最大附著力矩兩種載荷工況進(jìn)行計(jì)算;
按發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩計(jì)算時(shí):
=1260.74N/mm (3.7)
按最大附著力矩計(jì)算時(shí):
=836.22 (3.8)
雖然附著力矩產(chǎn)生的p很大,但由于發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩的限制
可知,校核成功。
②輪齒的彎曲強(qiáng)度計(jì)算。汽車主減速器螺旋錐齒輪輪齒的計(jì)算彎曲應(yīng)力為
(3.9)
式中:——超載系數(shù)1.0;
——尺寸系數(shù)
——載荷分配系數(shù)1.1~1.25;
——質(zhì)量系數(shù),對(duì)于汽車驅(qū)動(dòng)橋齒輪,檔齒輪接觸良好、節(jié)及徑向跳動(dòng)精度高時(shí),取1;
(2)輪齒的接觸強(qiáng)度計(jì)算 螺旋錐齒輪齒面的計(jì)算接觸應(yīng)力(MPa)為:
(3.10)
式中:——材料的彈性系數(shù),對(duì)于鋼制齒輪副取232.6;
=1,=1,=1.11,=1;
——表面質(zhì)量系數(shù),對(duì)于制造精確的齒輪可取1;
J—— 計(jì)算應(yīng)力的綜合系數(shù),=0.1875,見圖3.2所示。
=666.7MPa<=1750MPa
=2373.45MPa<=2800MPa,
故符合要求、校核合理。
圖3.2應(yīng)力的綜合系數(shù)
3.3 主減速器齒輪的材料及熱處理
汽車驅(qū)動(dòng)橋主減速器的工作相當(dāng)繁重,與傳動(dòng)系其他齒輪比較,它具有載荷大、工作時(shí)間長(zhǎng)、載荷變化多、帶沖擊等特點(diǎn)。其損壞形式主要有齒根彎曲折斷、齒面疲勞點(diǎn)蝕(剝落)、磨損和擦傷等。據(jù)此對(duì)驅(qū)動(dòng)橋齒輪的材料及熱處理應(yīng)有以下要求:
(1)具有高的彎曲疲勞強(qiáng)度和接觸疲勞強(qiáng)度以及較好的齒面耐磨性,故齒表面應(yīng)有高的硬度;
(2)輪齒芯部應(yīng)有適當(dāng)?shù)捻g性以適應(yīng)沖擊載荷,避免在沖擊載荷下輪齒根部折斷;
(3)鋼材的鍛造、切削與熱處理等加工性能良好,熱處理變形小或變形規(guī)律性易控制,以提高產(chǎn)品質(zhì)量、減少制造成本并降低廢品率;
(4)選擇齒輪材料的合金元素時(shí)要適應(yīng)我國(guó)的情況。例如:為了節(jié)約鎳、鉻等我國(guó)發(fā)展了以錳、釩、硼、鈦、鉬、硅為主的合金結(jié)構(gòu)鋼系統(tǒng)。
汽車主減速器和差速器圓錐齒輪與雙曲面齒輪目前均用滲碳合金鋼制造。常用的鋼號(hào),,及,在本設(shè)計(jì)中采用了。
用滲碳合金鋼制造齒輪,經(jīng)滲碳、淬火、回火后,齒輪表面硬度可高達(dá)HRC58~64,而芯部硬度較低,當(dāng)m≤8時(shí)為HRC32~45。
對(duì)于滲碳深度有如下的規(guī)定:當(dāng)端面模數(shù)m≤5時(shí),為0.9~1.3mm。
由于新齒輪潤(rùn)滑不良,為了防止齒輪在運(yùn)行初期產(chǎn)生膠合、咬死或擦傷,防止早期磨損,圓錐齒輪與雙曲面齒輪副草熱處理及精加工后均予以厚度為0.005~0.010~0.020mm的磷化處理或鍍銅、鍍錫。這種表面鍍層不應(yīng)用于補(bǔ)償零件的公差尺寸,也不能代替潤(rùn)滑[5]。
對(duì)齒面進(jìn)行噴丸處理有可能提高壽命達(dá)25%。對(duì)于滑動(dòng)速度高的齒輪,為了提高其耐磨性進(jìn)行滲硫處理。滲硫處理時(shí)溫度低,故不會(huì)引起齒輪變形。滲硫后摩擦系數(shù)可顯著降低,故即使?jié)櫥瑮l件較差,也會(huì)防止齒輪咬死、膠合和擦傷等現(xiàn)象產(chǎn)生。
3.4 主減速器軸承的計(jì)算
設(shè)計(jì)時(shí),通常是先根據(jù)主減速器的結(jié)構(gòu)尺寸初步確定軸承的型號(hào),然后驗(yàn)算軸承壽命。影響軸承壽命的主要外因是它的工作載荷及工作條件,因此在驗(yàn)算軸承壽命之前,應(yīng)先求出作用在齒輪上的軸向力、徑向力、圓周力,然后再求出軸承反力,以確定軸承載荷。
(1) 作用在主減速器主動(dòng)齒輪上的力
齒面寬中點(diǎn)的圓周力P為
(3.11)
式中:T——作用在該齒輪上的轉(zhuǎn)矩。主動(dòng)齒輪的當(dāng)量轉(zhuǎn)矩;
——該齒輪齒面寬中點(diǎn)的分度圓直徑。
注:汽車在行駛過程中,由于變速器檔位的改變,且發(fā)動(dòng)機(jī)也不盡處于最大轉(zhuǎn)矩狀態(tài),因此主減速器齒輪的工作轉(zhuǎn)矩處于經(jīng)常變化中。實(shí)踐表明,軸承的主要損壞形式是疲勞損傷,所以應(yīng)按輸入的當(dāng)量轉(zhuǎn)矩進(jìn)行計(jì)算。作用在主減速器主動(dòng)錐齒輪上的當(dāng)量轉(zhuǎn)矩可按下式求得:
(3.12)
式中:——變速器Ⅰ,Ⅱ,,Ⅴ檔使用率為1%,3%,5%,16%,
75%;
——變速器的傳動(dòng)比為7.64,4.27,2.61,1.59,1.00;
——變速器處于Ⅰ,Ⅱ,,Ⅴ檔時(shí)的發(fā)動(dòng)機(jī)轉(zhuǎn)矩利用率50%,60%,70%,70%,60%。
對(duì)于螺旋錐齒輪
=35.07(mm) (3.13)
=40.02(mm) (3.14)
式中:——主、從動(dòng)齒輪齒面寬中點(diǎn)的分度圓直徑;
——從動(dòng)齒輪齒面寬
——從動(dòng)齒輪的節(jié)錐角62.53;
計(jì)算得:=16063.3N
螺旋錐齒輪的軸向力與徑向力
主動(dòng)齒輪的螺旋方向?yàn)樽?;旋轉(zhuǎn)方向?yàn)轫槙r(shí)針:
=21729(N) (3.16)
=5367.54(N) (3.17)
從動(dòng)齒輪的螺旋方向?yàn)橛遥?
=6613.27(N) (3.18)
=17088.3(N) (3.19)
式中:——齒廓表面的法向壓力角22.5;
——主、從動(dòng)齒輪的節(jié)錐角13.091,76.908。
主動(dòng)錐齒輪選圓錐滾子軸承(GB/T297-1994):滾動(dòng)軸承 30207 GB/T297-1994
滾動(dòng)軸承 30208 GB/T297-1994
從動(dòng)齒輪選圓錐滾子軸承(GB/T297-1994): 滾動(dòng)軸承 30208 GB/T297-1994
(2)主減速器軸承載荷的計(jì)算 軸承的軸向載荷,就是上述的齒輪軸向力。而軸承的徑向載荷則是上述齒輪徑向力、圓周力及軸向力這三者所引起的軸承徑向支承反力的向量和。當(dāng)主減速器的齒輪尺寸、支承型試和軸承位置已確定,并算出齒輪的徑向力、軸向力及圓周力以后,則可計(jì)算出軸承的徑向載荷。
懸臂式支承主動(dòng)錐齒輪的軸承徑向載荷 如圖3.3(a)所示軸承A、B的徑向載荷為
=10957(N) (3.