2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版

上傳人:xt****7 文檔編號:105223887 上傳時間:2022-06-11 格式:DOC 頁數(shù):11 大?。?08.02KB
收藏 版權申訴 舉報 下載
2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版_第1頁
第1頁 / 共11頁
2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版_第2頁
第2頁 / 共11頁
2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版》由會員分享,可在線閱讀,更多相關《2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學第一輪復習單元講座 第03講 函數(shù)的基本性質教案 新人教版 一.課標要求 1.通過已學過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調性、最大(小)值及其幾何意義; 2.結合具體函數(shù),了解奇偶性的含義; 二.命題走向 從近幾年來看,函數(shù)性質是高考命題的主線索,不論是何種函數(shù),必須與函數(shù)性質相關聯(lián),因此在復習中,針對不同的函數(shù)類別及綜合情況,歸納出一定的復習線索。 預測xx年高考的出題思路是:通過研究函數(shù)的定義域、值域,進而研究函數(shù)的單調性、奇偶性以及最值。 預測明年的對本講的考察是: (1)考察函數(shù)性質的選擇題1個或1個填空題,還可能結合導數(shù)出研究函數(shù)性質的大題; (

2、2)以中等難度、題型新穎的試題綜合考察函數(shù)的性質,以組合形式、一題多角度考察函數(shù)性質預計成為新的熱點。 三.要點精講 1.奇偶性 (1)定義:如果對于函數(shù)f(x)定義域內的任意x都有f(-x)=-f(x),則稱f(x)為奇函數(shù);如果對于函數(shù)f(x)定義域內的任意x都有f(-x)=f(x),則稱f(x)為偶函數(shù)。 如果函數(shù)f(x)不具有上述性質,則f(x)不具有奇偶性.如果函數(shù)同時具有上述兩條性質,則f(x)既是奇函數(shù),又是偶函數(shù)。 注意: 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質; 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域

3、內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。 (2)利用定義判斷函數(shù)奇偶性的格式步驟: 首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱; 確定f(-x)與f(x)的關系; 作出相應結論: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù); 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù)。 (3)簡單性質: ①圖象的對稱性質:一個函數(shù)是奇函數(shù)的充要條件是它的圖象關于原點對稱;一個函數(shù)是偶函數(shù)的充要條件是它的圖象關于y軸對稱; ②設,的定義域分別是,那么在它們的公共定義域

4、上: 奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇 2.單調性 (1)定義:一般地,設函數(shù)y=f(x)的定義域為I, 如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1f(x2)),那么就說f(x)在區(qū)間D上是增函數(shù)(減函數(shù)); 注意: 函數(shù)的單調性是在定義域內的某個區(qū)間上的性質,是函數(shù)的局部性質; 必須是對于區(qū)間D內的任意兩個自變量x1,x2;當x1

5、間D叫做y=f(x)的單調區(qū)間。 (3)設復合函數(shù)y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定義域的某個區(qū)間,B是映射g : x→u=g(x) 的象集: ①若u=g(x) 在 A上是增(或減)函數(shù),y= f(u)在B上也是增(或減)函數(shù),則函數(shù)y= f[g(x)]在A上是增函數(shù); ②若u=g(x)在A上是增(或減)函數(shù),而y= f(u)在B上是減(或增)函數(shù),則函數(shù)y= f[g(x)]在A上是減函數(shù)。 (4)判斷函數(shù)單調性的方法步驟 利用定義證明函數(shù)f(x)在給定的區(qū)間D上的單調性的一般步驟: 任取x1,x2∈D,且x1

6、x2); 變形(通常是因式分解和配方); 定號(即判斷差f(x1)-f(x2)的正負); 下結論(即指出函數(shù)f(x)在給定的區(qū)間D上的單調性)。 (5)簡單性質 ①奇函數(shù)在其對稱區(qū)間上的單調性相同; ②偶函數(shù)在其對稱區(qū)間上的單調性相反; ③在公共定義域內: 增函數(shù)增函數(shù)是增函數(shù); 減函數(shù)減函數(shù)是減函數(shù); 增函數(shù)減函數(shù)是增函數(shù); 減函數(shù)增函數(shù)是減函數(shù)。 3.最值 (1)定義: 最大值:一般地,設函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足:①對于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,稱M是函數(shù)y=f(x)的最大

7、值。 最小值:一般地,設函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足:①對于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,稱M是函數(shù)y=f(x)的最大值。 注意: 函數(shù)最大(小)首先應該是某一個函數(shù)值,即存在x0∈I,使得f(x0) = M; 函數(shù)最大(?。撌撬泻瘮?shù)值中最大(?。┑?,即對于任意的x∈I,都有f(x)≤M(f(x)≥M)。 (2)利用函數(shù)單調性的判斷函數(shù)的最大(?。┲档姆椒ǎ? 利用二次函數(shù)的性質(配方法)求函數(shù)的最大(?。┲?; 利用圖象求函數(shù)的最大(?。┲?; 利用函數(shù)單調性的判斷函數(shù)的最大(?。┲担? 如果函數(shù)y

8、=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有最大值f(b); 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 4.周期性 (1)定義:如果存在一個非零常數(shù)T,使得對于函數(shù)定義域內的任意x,都有f(x+T)= f(x),則稱f(x)為周期函數(shù); (2)性質:①f(x+T)= f(x)常常寫作若f(x)的周期中,存在一個最小的正數(shù),則稱它為f(x)的最小正周期;②若周期函數(shù)f(x)的周期為T,則f(ωx)(ω≠0)是周期函數(shù),且周期為。 四.典例解析 題型一:判斷

9、函數(shù)的奇偶性 例1.討論下述函數(shù)的奇偶性: 解:(1)函數(shù)定義域為R, , ∴f(x)為偶函數(shù); (另解)先化簡:,顯然為偶函數(shù);從這可以看出,化簡后再解決要容易得多。 (2)須要分兩段討論: ①設 ②設 ③當x=0時f(x)=0,也滿足f(-x)=-f(x); 由①、②、③知,對x∈R有f(-x) =-f(x), ∴f(x)為奇函數(shù); (3),∴函數(shù)的定義域為, ∴f(x)=log21=0(x=±1) ,即f(x)的圖象由兩個點 A(-1,0)與B(1,0)組成,這兩點既關于y軸對稱,又關于原點對稱,∴f(x)既是奇函數(shù),又是偶函數(shù); (4)∵

10、x2≤a2, ∴要分a >0與a <0兩類討論, ①當a >0時, ,∴當a >0時,f(x)為奇函數(shù); 既不是奇函數(shù),也不是偶函數(shù). 點評:判斷函數(shù)的奇偶性是比較基本的問題,難度不大,解決問題時應先考察函數(shù)的定義域,若函數(shù)的解析式能化簡,一般應考慮先化簡,但化簡必須是等價變換過程(要保證定義域不變)。 例2.(xx天津文.16)設函數(shù)f(x)在(-∞,+∞)內有定義,下列函數(shù):①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x)。 必為奇函數(shù)的有_____(要求填寫正確答案的序號) 答案:②④;解析:y=(-x)f[(-x)2]=-

11、xf(x2)=-y;y=f(-x)-f(x)=-y。 點評:該題考察了判斷抽象函數(shù)奇偶性的問題。對學生邏輯思維能力有較高的要求。 題型二:奇偶性的應用 例3.(xx上海春,4)設f(x)是定義在R上的奇函數(shù),若當x≥0時,f(x)=log3(1+x),則f(-2)=____ _。 答案:-1;解:因為x≥0時,f(x)=log3(1+x),又f(x)為奇函數(shù),所以f(-x)=-f(x),設x<0,所以f(x)=-f(-x)=-f(1-x),所以f(-2)=-log33=-1。 點評:該題考察函數(shù)奇偶性的應用。解題思路是利用函數(shù)的奇偶性得到函數(shù)在對稱區(qū)域上函數(shù)的取值。 例4.已知

12、定義在R上的函數(shù)y= f(x)滿足f(2+x)= f(2-x),且f(x)是偶函數(shù),當x∈[0,2]時,f(x)=2x-1,求x∈[-4,0]時f(x)的表達式。 解:由條件可以看出,應將區(qū)間[-4,0]分成兩段考慮: ①若x∈[-2,0],-x∈[0,2], ∵f(x)為偶函數(shù), ∴當x∈[-2,0]時,f(x)= f(-x)=-2x-1, ②若x∈[-4,-2, ∴4+ x∈[0,2, ∵f(2+x)+ f(2-x), ∴f(x)= f(4-x), ∴f(x)= f(-x)= f[4-(-x)]= f(4+x)=2(x+4)-1=2x+7; 綜上, 點評:結合函數(shù)的數(shù)

13、字特征,借助函數(shù)的奇偶性,處理函數(shù)的解析式。 題型三:判斷證明函數(shù)的單調性 例5.(xx天津,19)設,是上的偶函數(shù)。 (1)求的值;(2)證明在上為增函數(shù)。 解:(1)依題意,對一切,有,即。 ∴對一切成立,則,∴, ∵,∴。 (2)(定義法)設,則 , 由,得,, ∴, 即,∴在上為增函數(shù)。 (導數(shù)法)∵, ∴ ∴在上為增函數(shù) 點評:本題用了兩種方法:定義法和導數(shù)法,相比之下導數(shù)法比定義法更為簡潔。 例6.已知f(x)是定義在R上的增函數(shù),對x∈R有f(x)>0,且f(5)=1,設F(x)= f(x)+,討論F (x)的單調性,并證明你的結論。 解:這是抽

14、角函數(shù)的單調性問題,應該用單調性定義解決。 在R上任取x1、x2,設x110時f(x)>1; ① 若x1x1>5,則f(x2)>f(x1)>1 , ∴f(x1)f(x2)>1, ∴>0, ∴ F(x2)> F (x1); 綜上,F(xiàn) (x)在(-∞,5)為減函數(shù),在(5,+∞)為增函數(shù)

15、。 點評:該題屬于判斷抽象函數(shù)的單調性。抽象函數(shù)問題是函數(shù)學習中一類比較特殊的問題,其基本能力是變量代換、換元等,應熟練掌握它們的這些特點。 題型四:函數(shù)的單調區(qū)間 例7.(xx春季北京、安徽,12)設函數(shù)f(x)=(a>b>0),求f(x)的單調區(qū)間,并證明f(x)在其單調區(qū)間上的單調性。 .解:在定義域內任取x1<x2, ∴f(x1)-f(x2)= , ∵a>b>0,∴b-a<0,x1-x2<0, 只有當x1<x2<-b或-b<x1<x2時函數(shù)才單調. 當x1<x2<-b或-b<x1<x2時f(x1)-f(x2)>0. ∴f(x)在(-b,+∞)上是單調減函數(shù),在(-∞

16、,-b)上是單調減函數(shù). 點評:本小題主要考查了函數(shù)單調性的基本知識。對于含參數(shù)的函數(shù)應用函數(shù)單調性的定義求函數(shù)的單調區(qū)間。 例8.(1)求函數(shù)的單調區(qū)間; (2)已知若試確定的單調區(qū)間和單調性。 解:(1)函數(shù)的定義域為, 分解基本函數(shù)為、 顯然在上是單調遞減的,而在上分別是單調遞減和單調遞增的。根據(jù)復合函數(shù)的單調性的規(guī)則: 所以函數(shù)在上分別單調遞增、單調遞減。 (2)解法一:函數(shù)的定義域為R, 分解基本函數(shù)為和。 顯然在上是單調遞減的,上單調遞增; 而在上分別是單調遞增和單調遞減的。且, 根據(jù)復合函數(shù)的單調性的規(guī)則: 所以函數(shù)的單調增區(qū)間為;單調減區(qū)間為。 解法

17、二:, , 令 ,得或, 令 ,或 ∴單調增區(qū)間為;單調減區(qū)間為。 點評:該題考察了復合函數(shù)的單調性。要記住“同向增、異向減”的規(guī)則。 題型五:單調性的應用 例9.已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。 解:∵f(2)=0,∴原不等式可化為f[log2(x2+5x+4)]≥f(2)。 又∵f(x)為偶函數(shù),且f(x)在(0,+∞)上為增函數(shù), ∴f(x)在(-∞,0)上為減函數(shù)且f(-2)=f(2)=0。 ∴不等式可化為  log2(x2+5x+4)≥2      ?、? 或        log2(

18、x2+5x+4)≤-2 ② 由①得x2+5x+4≥4,∴x≤-5或x≥0 ③ 由②得0<x2+5x+4≤得 ≤x<-4或-1<x≤ ④ 由③④得原不等式的解集為 {x|x≤-5或≤x≤-4或-1<x≤或x≥0。 例10.已知奇函數(shù)f(x)的定義域為R,且f(x)在[0,+∞]上是增函數(shù),是否存在實數(shù)m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)對所有θ∈[0,]都成立?若存在,求出符合條件的所有實數(shù)m的范圍,若不存在,說明理由。 解:∵f(x)是R上的奇函數(shù),且在[0,+∞]上是增函數(shù), ∴f(x)是R上的增函數(shù),于是不等式可等價地轉化為f(co

19、s2θ-3)>f(2mcosθ-4m), 即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0。 設t=cosθ,則問題等價地轉化為函數(shù) g(t)=t2-mt+2m-2=(t-)2-+2m-2在[0,1]上的值恒為正,又轉化為函數(shù)g(t)在[0,1]上的最小值為正。 ∴當<0,即m<0時,g(0)=2m-2>0m>1與m<0不符; 當0≤≤1時,即0≤m≤2時,g(m)=-+2m-2>04-21,即m>2時,g(1)=m-1>0m>1。 ∴m>2 綜上,符合題目要求的m的值存在,其取值范圍是m>4-2。 另

20、法(僅限當m能夠解出的情況): cos2θ-mcosθ+2m-2>0對于θ∈[0,]恒成立,等價于m>(2-cos2θ)/(2-cosθ) 對于θ∈[0,]恒成立 ∵當θ∈[0,]時,(2-cos2θ)/(2-cosθ) ≤4-2,∴m>4-2。 點評:上面兩例子借助于函數(shù)的單調性處理了恒成立問題和不等式的求解問題。 題型六:最值問題 例11.(xx全國理,21)設a為實數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R。 (1)討論f(x)的奇偶性;(2)求f(x)的最小值。 解:(1)當a=0時,函數(shù)f(-x)=(-x)2+|-x|+1=f(x),此時f(x)為偶函數(shù)。 當a≠0

21、時,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a)。 此時函數(shù)f(x)既不是奇函數(shù),也不是偶函數(shù)。 (2)①當x≤a時,函數(shù)f(x)=x2-x+a+1=(x-)2+a+。 若a≤,則函數(shù)f(x)在(-∞,a)上單調遞減,從而,函數(shù)f(x)在(-∞,a)上的最小值為f(a)=a2+1。 若a>,則函數(shù)f(x)在(-∞,a上的最小值為f()=+a,且f()≤ f(a)。 ②當x≥a時,函數(shù)f(x)=x2+x-a+1=(x+)2-a+。 若a≤-,則函數(shù)f(x)在[a,+∞上的最小值為f(-)=-a,且f(-)≤f(a)。 若a>-,

22、則函數(shù)f(x)在[a,+∞]上單調遞增,從而,函數(shù)f(x)在[a,+∞]上的最小值為f(a)=a2+1。 綜上,當a≤-時,函數(shù)f(x)的最小值是-a。 當-<a≤時,函數(shù)f(x)的最小值是a2+1。 當a>時,函數(shù)f(x)的最小值是a+。 點評:函數(shù)奇偶性的討論問題是中學數(shù)學的基本問題,如果平時注意知識的積累,對解此題會有較大幫助.因為x∈R,f(0)=|a|+1≠0,由此排除f(x)是奇函數(shù)的可能性.運用偶函數(shù)的定義分析可知,當a=0時,f(x)是偶函數(shù),第2題主要考查學生的分類討論思想、對稱思想。 例12.設m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m

23、2+m+)。 (1)證明:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M; (2)當m∈M時,求函數(shù)f(x)的最小值; (3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1。  (1)證明:先將f(x)變形:f(x)=log3[(x-2m)2+m+], 當m∈M時,m>1,∴(x-m)2+m+>0恒成立, 故f(x)的定義域為R。 反之,若f(x)對所有實數(shù)x都有意義,則只須x2-4mx+4m2+m+>0。 令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M。 (2)解析:設u=x2-4mx+4m2+m+, ∵y

24、=log3u是增函數(shù), ∴當u最小時,f(x)最小。 而u=(x-2m)2+m+, 顯然,當x=m時,u取最小值為m+, 此時f(2m)=log3(m+)為最小值。 (3)證明:當m∈M時,m+=(m-1)+ +1≥3, 當且僅當m=2時等號成立。 ∴l(xiāng)og3(m+)≥log33=1。 點評:該題屬于函數(shù)最值的綜合性問題,考生需要結合對數(shù)函數(shù)以及二次函數(shù)的性質來進行處理。 題型七:周期問題 例13.若y=f(2x)的圖像關于直線和對稱,則f(x)的一個周期為( ) A. B. C. D. 解:因為y=f(2x)

25、關于對稱,所以f(a+2x)=f(a-2x)。 所以f(2a-2x)=f[a+(a-2x)]=f[a-(a-2x)]=f(2x)。 同理,f(b+2x) =f(b-2x), 所以f(2b-2x)=f(2x), 所以f(2b-2a+2x)=f[2b-(2a-2x)]=f(2a-2x)=f(2x)。 所以f(2x)的一個周期為2b-2a, 故知f(x)的一個周期為4(b-a)。選項為D。 點評:考察函數(shù)的對稱性以及周期性,類比三角函數(shù)中的周期變換和對稱性的解題規(guī)則處理即可。若函數(shù)y=f(x)的圖像關于直線x=a和x=b對稱(a≠b),則這個函數(shù)是周期函數(shù),其周期為2(b-a)。 例

26、14.已知函數(shù)是定義在上的周期函數(shù),周期,函數(shù)是奇函數(shù)又知在上是一次函數(shù),在上是二次函數(shù),且在時函數(shù)取得最小值。 ①證明:; ②求的解析式; ③求在上的解析式。 解:∵是以為周期的周期函數(shù), ∴, 又∵是奇函數(shù), ∴, ∴。 ②當時,由題意可設, 由得, ∴, ∴。 ③∵是奇函數(shù), ∴, 又知在上是一次函數(shù), ∴可設,而, ∴,∴當時,, 從而當時,,故時,。 ∴當時,有, ∴。 當時,, ∴ ∴。 點評:該題屬于普通函數(shù)周期性應用的題目,周期性是函數(shù)的圖像特征,要將其轉化成數(shù)字特征。 五.思維總結 1.判斷函數(shù)的奇偶性,必須按照函數(shù)的奇偶性

27、定義進行,為了便于判斷,常應用定義的等價形式:f(-x)= ±f(x)óf(-x) f(x)=0; 2.對函數(shù)奇偶性定義的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)這兩個等式上,要明確對定義域內任意一個x,都有f(-x)=f(x),f(-x)=-f(x)的實質是:函數(shù)的定義域關于原點對稱這是函數(shù)具備奇偶性的必要條件。稍加推廣,可得函數(shù)f(x)的圖象關于直線x=a對稱的充要條件是對定義域內的任意x,都有f(x+a)=f(a-x)成立函數(shù)的奇偶性是其相應圖象的特殊的對稱性的反映; 3.若奇函數(shù)的定義域包含0,則f(0)=0,因此,“f(x)為奇函數(shù)”是"f(0)=0"的非充

28、分非必要條件; 4.奇函數(shù)的圖象關于原點對稱,偶函數(shù)的圖象關于y軸對稱,因此根據(jù)圖象的對稱性可以判斷函數(shù)的奇偶性。 5.若存在常數(shù)T,使得f(x+T)=f(x)對f(x)定義域內任意x恒成立,則稱T為函數(shù)f(x)的周期,一般所說的周期是指函數(shù)的最小正周期周期函數(shù)的定義域一定是無限集。 6.單調性是函數(shù)學習中非常重要的內容,應用十分廣泛,由于新教材增加了“導數(shù)”的內容,所以解決單調性問題的能力得到了很大的提高,因此解決具體函數(shù)的單調性問題,一般求導解決,而解決與抽象函數(shù)有關的單調性問題一般需要用單調性定義解決。注意,關于復合函數(shù)的單調性的知識一般用于簡單問題的分析,嚴格的解答還是應該運用定義或求導解決。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!