2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版

上傳人:xt****7 文檔編號:105352781 上傳時間:2022-06-11 格式:DOC 頁數(shù):11 大小:186.52KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版_第1頁
第1頁 / 共11頁
2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版_第2頁
第2頁 / 共11頁
2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學第一輪復習單元講座 第07講 函數(shù)模型及其應用教案 新人教版 一.課標要求: 1.利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義; 2.收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應用。 二.命題走向 函數(shù)應用問題是高考的熱點,高考對應用題的考察即考小題又考大題,而且分值呈上升的趨勢。高考中重視對環(huán)境保護及數(shù)學課外的的綜合性應用題等的考察。出于“立意”和創(chuàng)設(shè)情景的需要,函數(shù)試題設(shè)置問題的角度和方式也不斷創(chuàng)新,重視函數(shù)思想的考察,加大函

2、數(shù)應用題、探索題、開放題和信息題的考察力度,從而使高考考題顯得新穎、生動和靈活。 預測xx年的高考,將再現(xiàn)其獨特的考察作用,而函數(shù)類應用題,是考察的重點,因而要認真準備應用題型、探索型和綜合題型,加大訓練力度,重視關(guān)于函數(shù)的數(shù)學建模問題,學會用數(shù)學和方法尋求規(guī)律找出解題策略。 (1)題型多以大題出現(xiàn),以實際問題為背景,通過解決數(shù)學問題的過程,解釋問題; (2)題目涉及的函數(shù)多以基本初等函數(shù)為載體,通過它們的性質(zhì)(單調(diào)性、極值和最值等)來解釋生活現(xiàn)象,主要涉計經(jīng)濟、環(huán)保、能源、健康等社會現(xiàn)象。 三.要點精講 1.解決實際問題的解題過程 (1)對實際問題進行抽象概括:研究實際問題中量與

3、量之間的關(guān)系,確定變量之間的主、被動關(guān)系,并用x、y分別表示問題中的變量; (2)建立函數(shù)模型:將變量y表示為x的函數(shù),在中學數(shù)學內(nèi),我們建立的函數(shù)模型一般都是函數(shù)的解析式; (3)求解函數(shù)模型:根據(jù)實際問題所需要解決的目標及函數(shù)式的結(jié)構(gòu)特點正確選擇函數(shù)知識求得函數(shù)模型的解,并還原為實際問題的解. 這些步驟用框圖表示: 實際問題 函數(shù)模型 實際問題的解 函數(shù)模型的解 抽象概括 還原說明 運用函數(shù)性質(zhì) 2.解決函數(shù)應用問題應著重培養(yǎng)下面一些能力: (1)閱讀理解、整理數(shù)據(jù)的能力:通過分析、畫圖、列表、歸類等方法,快速弄清數(shù)據(jù)之間的關(guān)系,

4、數(shù)據(jù)的單位等等; (2)建立函數(shù)模型的能力:關(guān)鍵是正確選擇自變量將問題的目標表示為這個變量的函數(shù),建立函數(shù)的模型的過程主要是抓住某些量之間的相等關(guān)系列出函數(shù)式,注意不要忘記考察函數(shù)的定義域; (3)求解函數(shù)模型的能力:主要是研究函數(shù)的單調(diào)性,求函數(shù)的值域、最大(?。┲担嬎愫瘮?shù)的特殊值等,注意發(fā)揮函數(shù)圖象的作用。 四.典例解析 題型1:正比例、反比例和一次函數(shù)型 例1.某地區(qū)1995年底沙漠面積為95萬公頃,為了解該地區(qū)沙漠面積的變化情況,進行了連續(xù)5年的觀測,并將每年年底的觀測結(jié)果記錄如下表。根據(jù)此表所給的信息進行預測:(1)如果不采取任何措施,那么到xx年底,該地區(qū)的沙漠面積將大

5、約變?yōu)槎嗌偃f公頃;(2)如果從xx年底后采取植樹造林等措施,每年改造0.6萬公頃沙漠,那么到哪一年年底該地區(qū)沙漠面積減少到90萬公頃? ? 觀測時間 1996年底 1997年底 xx年底 xx年底 xx年底 該地區(qū)沙漠比原有面積增加數(shù)(萬公頃) 0.xx 0.4000 0.6001 0.7999 1.0001 ? 解析:(1)由表觀察知,沙漠面積增加數(shù)y與年份數(shù)x之間的關(guān)系圖象近似地為一次函數(shù)y=kx+b的圖象。 將x=1,y=0.2與x=2,y=0.4,代入y=kx+b, 求得k=0.2,b=0, 所以y=0.2x(x∈N)。 因為原有沙漠面積為95萬公

6、頃,則到xx年底沙漠面積大約為 95+0.5×15=98(萬公頃)。 (2)設(shè)從1996年算起,第x年年底該地區(qū)沙漠面積能減少到90萬公頃,由題意得 95+0.2x-0.6(x-5)=90, 解得x=20(年)。 故到xx年年底,該地區(qū)沙漠面積減少到90萬公頃。 點評:初中我們學習過的正比例、反比例和一元一次函數(shù)的定義和基本性質(zhì),我們要牢固掌握。特別是題目中出現(xiàn)的“成正比例”、“成反比例”等條件要應用好。 例2.(xx安徽理21)(已知函數(shù)在R上有定義,對任何實數(shù)和任何實數(shù),都有 (Ⅰ)證明; (Ⅱ)證明 其中和均為常數(shù); 證明(Ⅰ)令,則,∵,∴。 (Ⅱ)①令,∵,∴,

7、則。 假設(shè)時,,則,而,∴,即成立。 ②令,∵,∴, 假設(shè)時,,則,而,∴,即成立?!喑闪?。 點評:該題應用了正比例函數(shù)的數(shù)字特征,從而使問題得到簡化。而不是一味的向函數(shù)求值方面靠攏。 題型2:二次函數(shù)型 例3.一輛中型客車的營運總利潤y(單位:萬元)與營運年數(shù)x(x∈N)的變化關(guān)系如表所示,則客車的運輸年數(shù)為()時該客車的年平均利潤最大。 (A)4 (B)5 (C)6 (D)7 x年 4 6 8 … (萬元) 7 11 7 … 解析:表中已給出了二次函數(shù)模型 , 由表中數(shù)據(jù)知,二次函數(shù)的圖象上存在三點(4,7),(6,11),(8,7

8、),則 。 解得a=-1,b=12,c=-25, 即。 而取“=”的條件為, 即x=5,故選(B)。 點評:一元二次函數(shù)是高中數(shù)學函數(shù)中最重要的一個模型,解決此類問題要充分利用二次函數(shù)的結(jié)論和性質(zhì),解決好實際問題。 例4.行駛中的汽車,在剎車后由于慣性的作用,要繼續(xù)向前滑行一段距離后才會停下,這段距離叫剎車距離。為測定某種型號汽車的剎車性能,對這種型號的汽車在國道公路上進行測試,測試所得數(shù)據(jù)如下表。在一次由這種型號的汽車發(fā)生的交通事故中,測得剎車距離為15.13m,問汽車在剎車時的速度是多少? ? 剎車時車速v/km/h 15 30 40 50 60 80

9、剎車距離s/m 1.23 7.30 12.2 18.40 25.80 44.40 ? 解析:所求問題就變?yōu)楦鶕?jù)上表數(shù)據(jù),建立描述v與s之間關(guān)系的數(shù)學模型的問題。此模型不能由表格中的數(shù)據(jù)直接看出,因此,以剎車時車速v為橫軸,以剎車距離s為縱軸建立直角坐標系。根據(jù)表中的數(shù)據(jù)作散點圖,可看出應選擇二次函數(shù)作擬合函數(shù)。假設(shè)變量v與s之間有如下關(guān)系式:,因為車速為0時,剎車距離也為0,所以二次曲線的圖象應通過原點(0,0)。再在散點圖中任意選取兩點A(30,7.30),B(80,44.40)代入,解出a、b、c于是 。(代入其他數(shù)據(jù)有偏差是許可的) 將s=15.13代入得 , 解

10、得v≈45.07。 所以,汽車在剎車時的速度是45.07km/h。 例5.(xx北京春,理、文21)某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元. (1)當每輛車的月租金定為3600元時,能租出多少輛車? (2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少? 解:(1)當每輛車的月租金定為3600元時,未租出的車輛數(shù)為: =12,所以這時租出了88輛車. (2)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為

11、:f(x)=(100-)(x-150)-×50,整理得:f(x)=-+162x-21000=-(x-4050)2+307050.所以,當x=4050時,f(x)最大,其最大值為f(4050)=307050.即當每輛車的月租金定為4050元時,租賃公司的月收益最大,最大收益為307050元. 點評:本題貼近生活。要求考生讀懂題目,迅速準確建立數(shù)學模型,把實際問題轉(zhuǎn)化為數(shù)學問題并加以解決。 題型3:分段函數(shù)型 例6.某集團公司在xx年斥巨資分三期興建垃圾資源化處理工廠,如下表: ? 一期xx年投入 1億元 興建垃圾堆肥廠 年處理有機肥十多萬噸 年綜合收益 2千萬元 二期xx年

12、投入 4億元 興建垃圾焚燒發(fā)電一廠 年發(fā)電量1.3億kw/h 年綜合收益 4千萬元 三期xx年投入 2億元 興建垃圾焚燒發(fā)電二廠 年發(fā)電量1.3億kw/h 年綜合收益 4千萬元 ? 如果每期的投次從第二年開始見效,且不考慮存貸款利息,設(shè)xx年以后的x年的總收益為f(x)(單位:千萬元),試求f(x)的表達式,并預測到哪一年能收回全部投資款。 解析:由表中的數(shù)據(jù)知,本題需用分段函數(shù)進行處理。由表中的數(shù)據(jù)易得, f(x)=。 顯然,當n≤4時,不能收回投資款。 當n≥5時,由f(n)=10n-24>70, 得n>9.4,取n=10。 所以到xx年可以收回全部投

13、資款。 點評:分段函數(shù)是根據(jù)實際問題分類討論函數(shù)的解析式,從而尋求在不同情況下實際問題的處理結(jié)果。 例7.(xx全國,21)某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場售價與上市時間的關(guān)系用圖2—10中(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖2—10中(2)的拋物線表示. 圖2—10 (1)寫出圖中(1)表示的市場售價與時間的函數(shù)關(guān)系式P=f(t); 寫出圖中(2)表示的種植成本與時間的函數(shù)關(guān)系式Q=g(t); (2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大? (注:市場售價和種植成本的單位:元/102

14、 ,kg,時間單位:天) 解:(1)由圖(1)可得市場售價與時間的函數(shù)關(guān)系為 f(t)= 由圖(2)可得種植成本與時間的函數(shù)關(guān)系為 g(t)=(t-150)2+100,0≤t≤300. (2)設(shè)t時刻的純收益為h(t),則由題意得h(t)=f(t)-g(t), 即h(t)= 當0≤t≤200時,配方整理得h(t)=-(t-50)2+100, 所以,當t=50時,h(t)取得區(qū)間[0,200]上的最大值100; 當200<t≤300時,配方整理得 h(t)=-(t-350)2+100, 所以,當t=300時,h(t)取得區(qū)間(200,300]上的最大值87.5. 綜上,由

15、100>87.5可知,h(t)在區(qū)間[0,300]上可以取得最大值100,此時t=50,即從二月一日開始的第50天時,上市的西紅柿純收益最大. 點評:本題主要考查由函數(shù)圖象建立函數(shù)關(guān)系式和求函數(shù)最大值的問題.考查運用所學知識解決實際問題的能力. 題型4:三角函數(shù)型 例8.某港口水的深度y(m)是時間t(0≤t≤24,單位:h)的函數(shù),記作y=f(t)。下面是某日水深的數(shù)據(jù): ? t/h 0 3 6 9 12 15 18 21 24 y/m 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 ? 經(jīng)長期觀察,y=

16、f(t)的曲線可以近似地看成函數(shù)y=Asinωt+b的圖象。(1)試根據(jù)以上數(shù)據(jù)求出函數(shù)y=f(t)的近似表達式;(2)一般情況下,船舶航行時,船底離海底的距離為5m或5m以上時認為是安全的(船舶??繒r,船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為6.5m,如果該船希望在同一天內(nèi)安全進出港,請問,它最多能在港內(nèi)停留多少時間(忽進出港所需的時間)? 解析:題中直接給出了具體的數(shù)學模型,因此可直接采用表中的數(shù)據(jù)進行解答。 (1)由表中數(shù)據(jù)易得,周期T=12,,b=10, 所以。 (2)由題意,該船進出港時,水深應不小于 5+6.5=11.5(m), 所以, 化為, 應

17、有, 解得12k+1≤t≤12k+5 (k∈Z)。 在同一天內(nèi)取k=0或1, 所以1≤t≤5或13≤t≤17, 所以該船最早能在凌晨1時進港,最晚在下午17時出港,在港口內(nèi)最多停留16個小時。 點評:三角型函數(shù)解決實際問題要以三角函數(shù)的性質(zhì)為先,通過其單調(diào)性、周期性等性質(zhì)解決實際問題。特別是與物理知識中的電壓、電流、簡諧振動等知識結(jié)合到到一塊來出題,為此我們要對這些物理模型做到深入了解。 題型5:不等式型 例9.(xx湖南理20)對1個單位質(zhì)量的含污物體進行清洗, 清洗前其清潔度(含污物體的清潔度定義為: 為, 要求清洗完后的清潔度為. 有兩種方案可供選擇, 方案甲: 一次清

18、洗; 方案乙: 分兩次清洗. 該物體初次清洗后受殘留水等因素影響, 其質(zhì)量變?yōu)? 設(shè)用單位質(zhì)量的水初次清洗后的清潔度是, 用單位質(zhì)量的水第二次清洗后的清潔度是, 其中是該物體初次清洗后的清潔度.。 (Ⅰ)分別求出方案甲以及時方案乙的用水量, 并比較哪一種方案用水量較少; (Ⅱ)若采用方案乙, 當為某固定值時, 如何安排初次與第二次清洗的用水量, 使總用水量最小? 并討論取不同數(shù)值時對最少總用水量多少的影響. 解析:(Ⅰ)設(shè)方案甲與方案乙的用水量分別為x與z,由題設(shè)有=0.99,解得x=19. 由得方案乙初次用水量為3, 第二次用水量y滿足方程: 解得y=4,故z=4

19、+3. 即兩種方案的用水量分別為19與4+3. 因為當,故方案乙的用水量較少. (II)設(shè)初次與第二次清洗的用水量分別為與,類似(I)得 ,(*) 于是+ 當為定值時,, 當且僅當時等號成立.此時 將代入(*)式得 故時總用水量最少, 此時第一次與第二次用水量分別為, 最少總用水量是. 當,故T()是增函數(shù),這說明,隨著的值的最少總用水量, 最少總用水量最少總用水量. 點評:該題建立了函數(shù)解析式后,通過基本不等式“”解釋了函數(shù)的最值情況,而解決了實際問題。該問題也可以用二次函數(shù)的單調(diào)性判斷。 例10.(xx上海,文、理21)用水清洗一堆蔬菜上殘留的農(nóng)藥.

20、對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用x單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)f(x). (1)試規(guī)定f(0)的值,并解釋其實際意義; (2)試根據(jù)假定寫出函數(shù)f(x)應該滿足的條件和具有的性質(zhì); (3)設(shè)f(x)=,現(xiàn)有a(a>0)單位量的水,可以清洗一次,也 可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由 解:(1)f(0)=1表示沒有用水洗時,蔬菜上的農(nóng)藥量將保持原樣. (2)函數(shù)f(x)應該滿足的

21、條件和具有的性質(zhì)是:f(0)=1,f(1)=, 在[0,+∞)上f(x)單調(diào)遞減,且0<f(x)≤1. (3)設(shè)僅清洗一次,殘留的農(nóng)藥量為f1=,清洗兩次后,殘留的農(nóng)藥量為 f2=, 則f1-f2=. 于是,當a>2時,f1>f2;當a=2時,f1=f2;當0<a<2時,f1<f2. 因此,當a>2時,清洗兩次后殘留的農(nóng)藥量較少; 當a=2時,兩種清洗方法具有相同的效果; 當0<a<2時,一次清洗殘留的農(nóng)藥量較少. 點評:本題主要考查運用所學數(shù)學知識和方法解決實際問題的能力。以及函數(shù)概念、性質(zhì)和不等式證明的基本方法。 題型6:指數(shù)、對數(shù)型函數(shù) 例11.有一個湖泊受污染

22、,其湖水的容量為V立方米,每天流入湖的水量等于流出湖的水量。現(xiàn)假設(shè)下雨和蒸發(fā)平衡,且污染物和湖水均勻混合。 用,表示某一時刻一立方米湖水中所含污染物的克數(shù)(我們稱其湖水污染質(zhì)量分數(shù)),表示湖水污染初始質(zhì)量分數(shù)。 (1)當湖水污染質(zhì)量分數(shù)為常數(shù)時,求湖水污染初始質(zhì)量分數(shù); (2)分析時,湖水的污染程度如何。 解析: (1)設(shè), 因為為常數(shù),,即, 則; (2)設(shè), = 因為,,。污染越來越嚴重。 點評:通過研究指數(shù)函數(shù)的性質(zhì)解釋實際問題。我們要掌握底數(shù)兩種基本情況下函數(shù)的性質(zhì)特別是單調(diào)性和值域的差別,它能幫我們解釋具體問題。譬如向題目中出現(xiàn)的“污染越來越嚴重”還是“污染越

23、來越輕” 例12.現(xiàn)有某種細胞100個,其中有占總數(shù)的細胞每小時分裂一次,即由1個細胞分裂成2個細胞,按這種規(guī)律發(fā)展下去,經(jīng)過多少小時,細胞總數(shù)可以超過個?(參考數(shù)據(jù):). 解析:現(xiàn)有細胞100個,先考慮經(jīng)過1、2、3、4個小時后的細胞總數(shù), 1小時后,細胞總數(shù)為; 2小時后,細胞總數(shù)為; 3小時后,細胞總數(shù)為; 4小時后,細胞總數(shù)為; 可見,細胞總數(shù)與時間(小時)之間的函數(shù)關(guān)系為: , 由,得,兩邊取以10為底的對數(shù),得, ∴, ∵, ∴. 答:經(jīng)過46小時,細胞總數(shù)超過個。 點評:對于指數(shù)函數(shù)、對數(shù)函數(shù)要熟練應用近似計算的知識,來對事件進行合理的解析

24、。 五.思維總結(jié) 1.將實際問題轉(zhuǎn)化為函數(shù)模型,比較常數(shù)函數(shù)、一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)模型的增長差異,結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。 2.怎樣選擇數(shù)學模型分析解決實際問題 數(shù)學應用問題形式多樣,解法靈活。在應用題的各種題型中,有這樣一類題型:信息由表格數(shù)據(jù)的形式給出,要求對數(shù)據(jù)進行合理的轉(zhuǎn)化處理,建立數(shù)學模型,解答有關(guān)的實際問題。解答此類題型主要有如下三種方法: (1)直接法:若由題中條件能明顯確定需要用的數(shù)學模型,或題中直接給出了需要用的數(shù)學模型,則可直接代入表中的數(shù)據(jù),問題即可獲解; (2)列式比較法:若題所涉及的是最優(yōu)化方案問題,則可根據(jù)表格中的數(shù)據(jù)先列式,然后進行比較; (3)描點觀察法:若根據(jù)題設(shè)條件不能直接確定需要用哪種數(shù)學模型,則可根據(jù)表中的數(shù)據(jù)在直角坐標系中進行描點,作出散點圖,然后觀察這些點的位置變化情況,確定所需要用的數(shù)學模型,問題即可順利解決。下面舉例進行說明。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!