《【紅對(duì)勾】2020高考物理 動(dòng)能 動(dòng)能定理課時(shí)作業(yè)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《【紅對(duì)勾】2020高考物理 動(dòng)能 動(dòng)能定理課時(shí)作業(yè)(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)作業(yè)17 動(dòng)能 動(dòng)能定理
時(shí)間:45分鐘 滿(mǎn)分:100分
一、選擇題(8×8′=64′)
圖1
1.(2020·課標(biāo)全國(guó)理綜)如圖1所示,在外力作用下某質(zhì)點(diǎn)運(yùn)動(dòng)的v-t圖象為正弦曲線(xiàn).從圖中可以判斷( )
A.在0~t1時(shí)間內(nèi),外力做正功
B.在0~t1時(shí)間內(nèi),外力的功率逐漸增大
C.在t2時(shí)刻,外力的功率最大
D.在t1~t3時(shí)間內(nèi),外力做的總功為零
解析:在0~t1時(shí)間內(nèi),速度增大,由動(dòng)能定理得,選項(xiàng)A正確,由P=F·v可知,在t=0及t=t2時(shí)刻,外力功率為零,v-t圖象中的圖線(xiàn)的斜率代表加速度,在t1時(shí)刻a=0,則F=0,外力功率為0,選項(xiàng)B、C均錯(cuò);在
2、t1~t3時(shí)間內(nèi),動(dòng)能改變量為零,由動(dòng)能定理得,選項(xiàng)D正確.
答案:AD
2.(2020·上海單科)小球由地面豎直上拋,上升的最大高度為H,設(shè)所受阻力大小恒定,地面為零勢(shì)能面.在上升至離地高度h處,小球的動(dòng)能是勢(shì)能的2倍,在下落至離地高度h處,小球的勢(shì)能是動(dòng)能的2倍,則h等于( )
A. B.
C. D.
解析:設(shè)小球初動(dòng)能為Ek0,阻力為f,上升到最高點(diǎn),由動(dòng)能定理,得:0-Ek0=-(mg+f)·H.
上升到離地面高度為h點(diǎn)時(shí),設(shè)動(dòng)能為Ek1,則Ek1-Ek0=
-(mg+f)·h,Ek1=2mgh;在下落至離地面高度h處,設(shè)動(dòng)能為Ek2,則Ek2=(
3、mg-f)(H-h(huán)),Ek2=mgh;聯(lián)立以上各式,解得:h=H,故選項(xiàng)D正確.
答案:D
圖2
3.如圖2所示,一個(gè)質(zhì)量為m的物體靜止放在光滑水平面上,在互成60°角的大小相等的兩個(gè)水平恒力作用下,經(jīng)過(guò)一段時(shí)間,物體獲得的速度為v,在力的方向上獲得的速度分別為v1、v2,那么在這段時(shí)間內(nèi),其中一個(gè)力做的功為( )
A.mv2 B.mv2
C.mv2 D.mv2
解析:在合力F的方向上,由動(dòng)能定理得,W=Fs=mv2,某個(gè)分力的功為W1=F1scos30°=scos30°=Fs=mv2,故B正確.
答案:B
圖3
4.如圖3所示,ABCD是一個(gè)盆式容器,
4、盆內(nèi)側(cè)壁與盆底BC的連接處都是一段與BC相切的圓弧,B、C為水平的,其距離d=0.50 m,盆邊緣的高度為h=0.30 m.在A處放一個(gè)質(zhì)量為m的小物塊并讓其從靜止開(kāi)始下滑.已知盆內(nèi)側(cè)壁是光滑的,而盆底BC面與小物塊間的動(dòng)摩擦因數(shù)為μ=0.10,小物塊在盆內(nèi)來(lái)回滑動(dòng),最后停下來(lái),則停的地點(diǎn)到B的距離為( )
A.0.50 m B.0.25 m
C.0.10 m D.0
答案:D
圖4
5.質(zhì)量為m的小球被系在輕繩的一端,在豎直平面內(nèi)做半徑為R的圓周運(yùn)動(dòng),如圖4所示,運(yùn)動(dòng)過(guò)程中小球受到空氣阻力的作用,設(shè)某一時(shí)刻小球通過(guò)軌道的最低點(diǎn),此時(shí)繩子的張力為7mg,此后小球繼續(xù)做圓
5、周運(yùn)動(dòng),經(jīng)過(guò)半個(gè)圓周恰能通過(guò)最高點(diǎn),則在此過(guò)程中小球克服空氣阻力所做的功為( )
A.mgR B.mgR
C.mgR D.mgR
解析:設(shè)小球通過(guò)最低點(diǎn)時(shí)繩子張力為FT1,根據(jù)牛頓第二定律:FT1-mg=m
將FT1=7mg代入得Ek1=mv12=3mgR.
經(jīng)過(guò)半個(gè)圓周恰能通過(guò)最高點(diǎn),則mg=m,
此時(shí)小球的動(dòng)能Ek2=mgR,
從最低點(diǎn)到最高點(diǎn)應(yīng)用動(dòng)能定理:
-Wf-mg·2R=Ek2-Ek1
所以Wf=mgR.故選項(xiàng)C正確.
答案:C
圖5
6.如圖5所示,板長(zhǎng)為L(zhǎng),板的B端靜放著質(zhì)量為m的小物體P,物體與板的動(dòng)摩擦因數(shù)為μ,開(kāi)始板水平.若緩慢將板轉(zhuǎn)
6、過(guò)一個(gè)小角度α的過(guò)程中,物體與板保持相對(duì)靜止,則在此過(guò)程中( )
A.摩擦力對(duì)P做功μmgcosα(1-cosα)
B.摩擦力對(duì)P做功μmgsinα(1-cosα)
C.摩擦力對(duì)P不做功
D.板對(duì)P做功mgLsinα
答案:CD
圖6
7.在有大風(fēng)的情況下,一小球自A點(diǎn)豎直上拋,其運(yùn)動(dòng)軌跡如圖6所示(小球的運(yùn)動(dòng)可看做豎直方向的豎直上拋運(yùn)動(dòng)和水平方向的初速度為零的勻加速直線(xiàn)運(yùn)動(dòng)的合運(yùn)動(dòng)),小球運(yùn)動(dòng)軌跡上的A、B兩點(diǎn)在同一水平直線(xiàn)上,M點(diǎn)為軌跡的最高點(diǎn).若風(fēng)力的大小恒定,方向水平向右,小球在A點(diǎn)拋出時(shí)的動(dòng)能為4 J,在M點(diǎn)時(shí)它的動(dòng)能為2 J,落回到B點(diǎn)時(shí)動(dòng)能記為EkB,小球上升
7、時(shí)間記為t1,下落時(shí)間記為t2,不計(jì)其他阻力,則( )
A.s1∶s2=1∶3 B.t1
8、擦阻力的作用,其動(dòng)能隨位移變化的圖線(xiàn)如圖7所示,g取10 m/s2,則以下說(shuō)法中正確的是( )
A.物體與水平面間的動(dòng)摩擦因數(shù)是0.5
B.物體與水平面間的動(dòng)摩擦因數(shù)是0.25
C.物體滑行的總時(shí)間為4 s
D.物體滑行的總時(shí)間為2.5 s
解析:根據(jù)動(dòng)能定理可得物體動(dòng)能和位移之間的關(guān)系:
Ek=Ek0-μmgx,
由題中圖象所給數(shù)據(jù)可得:
μ===0.25,
根據(jù)牛頓第二定律可得加速度大小:
a==μg=2.5 m/s2,
由運(yùn)動(dòng)學(xué)公式可得物塊滑行的總時(shí)間:
t== s=4 s.
答案:BC
二、計(jì)算題(3×12′=36′)
9.(2020·上海單科)質(zhì)量為5
9、×103 kg的汽車(chē)在t=0時(shí)刻速度v0=10 m/s,隨后以P=6×104 W的額定功率沿平直公路繼續(xù)前進(jìn),經(jīng)72 s達(dá)到最大速度,設(shè)汽車(chē)受恒定阻力,其大小為2.5×103 N.求:
(1)汽車(chē)的最大速度vm;
(2)汽車(chē)在72 s內(nèi)經(jīng)過(guò)的路程s.
解析:(1)達(dá)到最大速度時(shí),牽引力等于阻力,
即P=F·vm=f·vm
vm== m/s=24 m/s.
(2)前72 s由動(dòng)能定理,得
Pt-f·s=mvm2-mv02
得s=
代入數(shù)據(jù),得s=1252 m.
答案:(1)24 m/s (2)1252 m
圖8
10.(2020·浙江理綜)在一次國(guó)際城市運(yùn)動(dòng)會(huì)中,要求
10、運(yùn)動(dòng)員從高為H的平臺(tái)上A點(diǎn)由靜止出發(fā),沿著動(dòng)摩擦因數(shù)為μ的滑道向下運(yùn)動(dòng)到B點(diǎn)后水平滑出,最后落在水池中.設(shè)滑道的水平距離為L(zhǎng),B點(diǎn)的高度h可由運(yùn)動(dòng)員自由調(diào)節(jié)(取g=10 m/s2).求:
(1)運(yùn)動(dòng)員到達(dá)B點(diǎn)的速度與高度h的關(guān)系.
(2)運(yùn)動(dòng)員要達(dá)到最大水平運(yùn)動(dòng)距離,B點(diǎn)的高度h應(yīng)調(diào)為多大?對(duì)應(yīng)的最大水平距離Lmax為多少?
(3)若圖中H=4 m,L=5 m,動(dòng)摩擦因數(shù)μ=0.2,則水平運(yùn)動(dòng)距離要達(dá)到7 m,h值應(yīng)為多少?
解析:(1)設(shè)斜面長(zhǎng)度為L(zhǎng)1,斜面傾角為α,根據(jù)動(dòng)能定理得
mg(H-h(huán))-μmgL1cosα=mv02 ①
即mg(H-h(huán))=μmgL+mv
11、02 ②
v0=. ③
(2)根據(jù)平拋運(yùn)動(dòng)公式
x=v0t ④
h=gt2 ⑤
由③~⑤式得x=2 ⑥
由⑥式可得,當(dāng)
h=(H-μL)
Lmax=L+H-μL.
(3)在⑥式中令x=2 m,H=4 m,L=5 m,μ=0.2,
則可得到:-h(huán)2+3h-1=0
求出h1= m=2.62 m,h2= m=0.38 m.
答案:(1)v0=
(2)(H-μL) L+H-μL
(3) m(或2.62 m) m(或0.38 m)
圖9
11.如圖9所示.AB是傾角為θ的粗糙直軌道,BC
12、D是光滑的圓弧軌道,AB恰好在B點(diǎn)與圓弧相切,圓弧的半徑為R.一個(gè)質(zhì)量為m的物體(可以看做質(zhì)點(diǎn))從直軌道上的P點(diǎn)由靜止釋放,結(jié)果它能在兩軌道間做往返運(yùn)動(dòng).已知P點(diǎn)與圓弧的圓心O等高,物體與軌道AB間的動(dòng)摩擦因數(shù)為μ.求:
(1)物體做往返運(yùn)動(dòng)的整個(gè)過(guò)程中在AB軌道上通過(guò)的總路程;
(2)最終當(dāng)物體通過(guò)圓弧軌道最低點(diǎn)E時(shí),對(duì)圓弧軌道的壓力;
(3)為使物體能順利到達(dá)圓弧軌道的最高點(diǎn)D,釋放點(diǎn)距B點(diǎn)的距離L′應(yīng)滿(mǎn)足什么條件.
解析:(1)因?yàn)槟Σ潦冀K對(duì)物體做負(fù)功,所以物體最終在圓心角為2θ的圓弧上往復(fù)運(yùn)動(dòng).
對(duì)整體過(guò)程由動(dòng)能定理得
mgR·cosθ-μmgcosθ·x=0
所以總路程為x=.
(2)對(duì)B→E過(guò)程
mgR(1-cosθ)=mvE2 ①
FN-mg= ②
由①②得對(duì)軌道壓力:FN=(3-2cosθ)mg.
(3)設(shè)物體剛好到D點(diǎn),則
mg= ③
對(duì)全過(guò)程由動(dòng)能定理得
mgL′sinθ-μmgcosθ·L′-mgR(1+cosθ)=mvD2 ④
由③④得應(yīng)滿(mǎn)足條件:L′=·R.
答案:(1) (2)(3-2cosθ)mg
(3)L′至少為·R