喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,CAD圖紙均為可自行編輯,有疑問咨詢QQ:1304139763
================
喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,CAD圖紙均為可自行編輯,有疑問咨詢QQ:1304139763
================
南京理工大學泰州科技學院
學生畢業(yè)設計(論文)中期檢查表
學生姓名
張磊
學 號
05010142
指導教師
張 躍
選題情況
課題名稱
外殼零件的注射模設計
難易程度
偏難
適中
√
偏易
工作量
較大
合理
√
較小
符合規(guī)范化的要求
任務書
有
√
無
開題報告
有
√
無
外文翻譯質量
優(yōu)
良
中
√
差
學習態(tài)度、出勤情況
好
一般
√
差
工作進度
快
按計劃進行
√
慢
中期工作匯報及解答問題情況
優(yōu)
良
中
√
差
中期成績評定:良
所在專業(yè)意見:
進度一般,基本能按照任務書完成相關進度。
負責人:
年 月 日
南京理工大學泰州科技學院
畢業(yè)設計(論文)前期工作材料
學生姓名:
張磊
學 號:
05010142
系 部:
機械工程系
專 業(yè):
機械工程及自動化
設計(論文)題目:
外殼零件的注射模設計
指導教師:
李連波 張 躍
材 料 目 錄
序號
名 稱
數量
備 注
1
畢業(yè)設計(論文)選題、審題表
1
2
畢業(yè)設計(論文)任務書
1
3
畢業(yè)設計(論文)開題報告〔含文獻綜述〕
1
4
畢業(yè)設計(論文)外文資料翻譯〔含原文〕
1
5
畢業(yè)設計(論文)中期檢查表
1
2009年5月
南京理工大學泰州科技學院
畢業(yè)設計(論文)外文資料翻譯
系 部: 機械系工程系
專 業(yè): 機械工程及自動化
姓 名: 張磊
學 號: 05010142
外文出處:The International Joumal Of Advanced
Manufacturing Technology
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導教師評語:
譯文基本能表達原文思想,語句較流暢,條理較清晰,專業(yè)用語翻譯基本準確,基本符合中文習慣,整體翻譯質量一般。
簽名:
年 月 日
附件1:外文資料翻譯譯文
注塑模具自動裝配造型
X. G. Ye, J. Y. H. Fuh and K. S. Lee
機械和生產工程部,新加坡國立大學,新加坡
注射模是一種由與塑料制品有關的和與制品無關的零部件兩大部分組成的機械裝置。本文提出了(有關)注射模裝配造型的兩個主要觀點,即描述了在計算機上進行注射模裝配以及確定裝配中與制品無關的零部件的方向和位置的方法,提出了一個基于特征和面向對象的表達式以描述注射模等級裝配關系,該論述要求并允許設計者除了考慮零部件的外觀形狀和位置外,還要明確知道什么部份最重要和為什么。因此,它為設計者進行裝配設計(DFA)提供了一個機會。同樣地,為了根據裝配狀態(tài)推斷出裝配體中裝配對象的結構,一種簡化的特征幾何學方法也誕生了。在提出的表達式和簡化特征幾何學的基礎上,進一步深入探討了自動裝配造型的方法。
關鍵字:裝配造型;基于特征;注射模;面向對象。
1、簡介
注射成型是生產塑料模具產品最重要的工藝。需要用到的兩種裝備是:注射成型機和注射?!,F(xiàn)在常用的注射成型機即所謂的通用機,在一定尺寸范圍內,可以用于不同形狀的各種塑料模型中,但注射模的設計就必須隨塑料制品的變化而變化。模型的幾何因素不同,它們的構造也就不同。注射模的主要任務是把塑料熔體制成塑料制品的最終形狀,這個過程是由型芯、型腔、鑲件、滑塊等與塑料制品有關的零部件完成的,它們是直接構成塑料件形狀及尺寸的各種零件,因此,這些零件稱為成型零件。(在下文,制品指塑料模具制品,部件指注射模的零部件。)除了注射成型外,注射模還必須完成分配熔體、冷卻,開模,傳輸、引導運動等任務,而完成這些任務的注射模組件在結構和形狀上往往都是相似的,它們的結構和形狀并不取決于塑料模具,而是取決于塑料制品。圖1顯示了注射模的結構組成。
成型零件的設計從塑料制品中分離了出來。近幾年,CAD/CAM技術已經成功的應用到成型零件的設計上。成型零件的形狀的自動化生成也引起了很多研究者的興趣,不過很少有人在其上付諸實踐,雖然它也象結構零件一樣重要?,F(xiàn)在,模具工業(yè)在應用計算機輔助設計系統(tǒng)設計成型零件和注射成型機時,遇到了兩個主要困難。第一,在一個模具裝置中,通常都包括有一百多個成型零部件,而這些零部件又相互聯(lián)系,相互限制。對于設計者來說,確定好這些零部件的正確位置是很費時間的。第二,在很多時候,模具設計者已想象出工件的真實形狀,例如螺絲,轉盤和銷釘,但是CAD系統(tǒng)只能用于另一種信息的操作。這就需要設計者將他們的想法轉化成CAD系統(tǒng)能接受的信息(例如線,面或者實體等)。因此,為了解決這兩個問題,很有必要發(fā)展一種用于注射模的自動裝配成型系統(tǒng)。在此篇文章里,主要講述了兩個觀點:即成型零部件和模具在計算機上的防真裝配以及確定零部件在模具中的結構和位置。
這篇文章概括了關于注塑成型的相關研究,并對注射成型機有一個完整的闡述。通過舉例一個注射模的自動裝配造型,提出一種簡化的幾何學符號法,用于確定注射模具零部件的結構和位置。
2、相關研究
在各種領域的研究中,裝配造型已成為一門學科,就像運動學、人工智能學、模擬幾何學一樣。Libardi作了一個關于裝配造型的調查。據稱,很多研究人員已經開始用圖表分析模型會議拓撲。在這個圖里,各個元件由節(jié)點組成的,再將這些點依次連接成線段。然而這些變化矩陣并沒有緊緊的連在一起,這將嚴重影響整體的結構,即,當其中某一部分移動了,其他部分并不能做出相應的移動。Lee and Gossard開發(fā)了一種新的系統(tǒng),支持包含更多的關于零部件的基本信息的一種分級的裝配數據結構,就像在各元件間的“裝配特征”。變化矩陣自動從實際的線段間的聯(lián)系得到,但是這個分級的拓撲模型只能有效地代表“部分”的關系。
自動判別裝配組件的結構意味著設計者可避免直接指定變化的矩陣,而且,當它的參考零部件的尺寸和位置被修改的時候,它的位置也將隨之改變?,F(xiàn)在有三種技術可以推斷組件在模具中的位置和結構:反復數值技術,象征代數學技術,以及象征幾何學技術。Lee and Gossard提出一項從空間關系計算每個組成元件的位置和方向的反復數值技術。他們的理論由三步組成:產生條件方程式,降低方程式數量,解答方程式。方程式有:16個滿足未知條件的方程式,18個滿足已知條件的方程式,6個滿足各個矩陣的方程式以及另外的兩個滿足旋轉元件的方程式。通常方程式的數量超過變量的數量時,應該想辦法去除多余的方程式。牛頓迭代法常用來解決這種方程式。不過這種方法存在兩種缺點:第一,它太依賴初始解;第二:反復的數值技術在解決空間內不能分清不同的根。因此,在一個完全的空間關系問題上,有可能解出來的結果在數學理論上有效,但實際上卻是行不通的。
Ambler和Popplestone提議分別計算每個零部件的旋轉量和轉變量以確定它們之間的空間關系,而解出的每個零部件的6個變量(3個轉變量和3旋轉量)要和它們的空間關系一致。這種方法要求大量的編程和計算,才能用可解的形式重寫有關的方程式。此外,它不能保證每次都能求出結果,特別是當方程式不能被以可解答的形式重寫時。
為了能確定出滿足一套幾何學限制條件的剛體的位置與方向,Kramer開發(fā)了一種特征幾何學方法。通過產生一連串滿足逐漸增長的限制條件的動作推斷其幾何特征,這樣將減少物體的自由度數。Kramer使用的基本參考實體稱為一個"標識",由一個點和兩正交軸構成。標識間的7個限制條件(coincident, in-line, in-plane, parallelFz,offsetFz, offsetFx and helical)都被定了義。對于一個包括獨立元件、相互約束的標識和不變的標識的問題來說,可以用動作分析法來解決問題,它將一步一步地最后求出物體的最終的幾何構造。在確定物體構造的每一個階段,自由度分析將決定什么動作能提供滿足限制物體未加限制部位的自由度。然后計算該動作怎樣能進一步降低物體的自由度數。在每個階段的最后,給隱喻的裝配計劃加上合適的一步。根據Shah和Rogers的分析,Kramer的理論代表了注射模具最顯著的發(fā)展,他的特征幾何學方法能解出全部的限制條件。和反復的數值技術相比,他的這種方法更具吸引力。不過要實行這種方法,需要大量的編程。
現(xiàn)在雖然已有很多研究者開始研究注射成型機,但仍很少有學者將注意力放在注射模設計上。Kruth開發(fā)了一個注射模的設計支援系統(tǒng)。這個系統(tǒng)通過高級的模具對象(零部件和特征)支持注射模的成型設計。因為系統(tǒng)是在AUTOCAD的基礎上設計的,因此它只適于線和簡單的實體模型操作。
3、注射模裝配概述
主要講述了關于注射模自動裝配造型的兩個方面:注射模在電腦上的防真裝配和確定結構零件在裝配中的位置和方向。在這個部分,我們基于特征和面向對象論述了注射模裝配。
注射模在電腦上的防真裝配包含著注射模零部件在結構上和空間上的聯(lián)系。這種防真必須支持所有給定零部件的裝配、在相互關聯(lián)的零部件間進行變動以及整體上的操作。而且防真裝配也必須滿足設計者的下列要求:
1) 支持能表達出模具設計者實體造型想象的高級對象。
2)成型防真應該有象現(xiàn)實一樣的操作功能,就如裝入和干擾檢查。
為了滿足這些要求,可用一個基于特征和面向對象的分級模型來代替注射模。這樣便將模型分成許多部分,反過來由多段模型和獨立部分組成。因此,一個分級的模型最適合于描述各組成部分之間的結構關系。一級表明一個裝配順序,另外,一個分級的模型還能說明一個部分相對于另一個部分的確定位置。
與直觀的固體模型操作相比,面向特征設計允許設計者在抽象上進行操作。它可以通過一最小套參數快速列出模型的特征、尺寸以及其方位。此外,由于特征模型的數據結構在幾何實體上的聯(lián)系,設計者更容易更改設計。如果沒有這些特征,設計者在構造固體模型幾何特征時就必須考慮到所有需要的細節(jié)。而且面向特征的防真為設計者提供了更高級的成型對象。例如,模具設計者想象出一個澆口的實體形狀,電腦就能將這個澆口造型出來。
面向對象造型法是一種參照實物的概念去設計模型的新思維方式。基本的圖素是能夠將數據庫和單一圖素的動作聯(lián)系起來的對象。面向對象的造型對理解問題并且設計程序和數據庫是很有用的。此外,面向對象的裝配體呈現(xiàn)方式使得“子”對象能繼承其“父”對象的信息變得更容易。
外文原文(復印件)
Automated Assembly Modelling for Plastic Injection Moulds
X. G. Ye, J. Y. H. Fuh and K. S. Lee
Department of Mechanical and Production Engineering, National University of Singapore, Singapore
An injection mould is a mechanical assembly that consists of product-dependent parts and product-independent parts. Thispaper addresses the two key issues of assembly modellingfor injection moulds, namely, representing an injection mouldassembly in a computer and determining the position andorientation of a product-independent part in an assembly. Afeature-based and object-oriented representation is proposedto represent the hierarchical assembly of injection moulds.This representation requires and permits a designer to thinkbeyond the mere shape of a part and state explicitly whatportions of a part are important and why. Thus, it providesan opportunity for designers to design for assembly (DFA). Asimplified symbolic geometric approach is also presented toinfer the configurations of assembly objects in an assemblyaccording to the mating conditions. Based on the proposedrepresentation and the simplified symbolic geometric approach,automatic assembly modelling is further discussed.
Keywords: Assembly modelling; Feature-based; Injectionmoulds; Object-oriented
1. Introduction
Injection moulding is the most important process for manufacturingplastic moulded products. The necessary equipment consistsof two main elements, the injection moulding machineand the injection mould. The injection moulding machines usedtoday are so-called universal machines, onto which variousmoulds for plastic parts with different geometries can bemounted, within certain dimension limits, but the injectionmould design has to change with plastic products. For differentmoulding geometries, different mould configurations are usuallynecessary. The primary task of an injection mould is to shapethe molten material into the final shape of the plastic product.This task is fulfilled by the cavity system that consists of core,cavity, inserts, and slider/lifter heads. The geometrical shapes and sizes of a cavity system are determined directly by theplastic moulded product, so all components of a cavity systemare called product-dependent parts. (Hereinafter, product refersto a plastic moulded product, part refers to the component ofan injection mould.) Besides the primary task of shaping theproduct, an injection mould has also to fulfil a number oftasks such as the distribution of melt, cooling the moltenmaterial, ejection of the moulded product, transmitting motion,guiding, and aligning the mould halves. The functional partsto fulfil these tasks are usually similar in structure and geometricalshape for different injection moulds. Their structuresand geometrical shapes are independent of the plastic mouldedproducts, but their sizes can be changed according to theplastic products. Therefore, it can be concluded that an injectionmould is actually a mechanical assembly that consists ofproduct-dependent parts and product-independent parts. Figure1 shows the assembly structure of an injection mould.
The design of a product-dependent part is based on extractingthe geometry from the plastic product. In recent years,CAD/CAM technology has been successfully used to helpmould designers to design the product-dependent parts. The automatic generation of the geometrical shape for a productdependentpart from the plastic product has also attracted alot of research interest [1,2]. However, little work has beencarried out on the assembly modelling of injection moulds,although it is as important as the design of product-dependentparts. The mould industry is facing the following two difficultieswhen use a CAD system to design product-independentparts and the whole assembly of an injection mould. First,there are usually around one hundred product-independent partsin a mould set, and these parts are associated with each otherwith different kinds of constraints. It is time-consuming forthe designer to orient and position the components in anassembly. Secondly, while mould designers, most of the time,think on the level of real-world objects, such as screws, plates,and pins, the CAD system uses a totally different level ofgeometrical objects. As a result, high-level object-oriented ideashave to be translated to low-level CAD entities such as lines,surfaces, or solids. Therefore, it is necessary to develop anautomatic assembly modelling system for injection moulds tosolve these two problems. In this paper, we address the followingtwo key issues for automatic assembly modelling: representinga product-independent part and a mould assembly ina computer; and determining the position and orientation of acomponent part in an assembly.
This paper gives a brief review of related research inassembly modelling, and presents an integrated representationfor the injection mould assembly. A simplified geometric symbolicmethod is proposed to determine the position and orientationof a part in the mould assembly. An example of automaticassembly modelling of an injection mould is illustrated.
2. Related Research
Assembly modelling has been the subject of research in diversefields, such as, kinematics, AI, and geometric modelling. Libardiet al. [3] compiled a research review of assembly modelling.They reported that many researchers had used graphstructures to model assembly topology. In this graph scheme,the components are represented by nodes, and transformationmatrices are attached to arcs. However, the transformation matrices are not coupled together, which seriously affects the transformation procedure, i.e. if a subassembly is moved, all its constituent parts do not move correspondingly. Lee and Gossard [4] developed a system that supported a hierarchical assembly data structure containing more basic information about assemblies such as “mating feature” between the components. The transformation matrices are derived automatically from the associations of virtual links, but this hierarchical topology model represents only “part-of” relations effectively.
Automatically inferring the configuration of components in an assembly means that designers can avoid specifying the transformation matrices directly. Moreover, the position of a component will change whenever the size and position of its reference component are modified. There exist three techniques to infer the position and orientation of a component in the
assembly: iterative numerical technique, symbolic algebraic technique, and symbolic geometric technique. Lee and Gossard [5] proposed an iterative numerical technique to compute the location and orientation of each component from the spatial relationships. Their method consists of three steps: generation of the constraint equations, reducing the number of equations, and solving the equations. There are 16 equations for “against” condition, 18 equations for “fit” condition, 6 property equations for each matrix, and 2 additional equations for a rotational part. Usually the number of equations exceeds the number of variables, so a method must be devised to remove the redundant equations. The Newton–Raphson iteration algorithm is used to solve the equations. This technique has two disadvantages:
first, the solution is heavily dependent on the initial solution; secondly, the iterative numerical technique cannot distinguish between different roots in the solution space. Therefore, it is possible, in a purely spatial relationship problem, that a mathematically valid, but physically unfeasible, solution can be obtained. Ambler and Popplestone [6] suggested a method of computing the required rotation and translation for each component to satisfy the spatial relationships between the components in
an assembly. Six variables (three translations and three rotations) for each component are solved to be consistent with the spatial relationships. This method requires a vast amount of programming and computation to rewrite related equations in a solvable format. Also, it does not guarantee a solution every time, especially when the equation cannot be rewritten
in solvable forms.
Kramer [7] developed a symbolic geometric approach for determining the positions and orientations of rigid bodies that satisfy a set of geometric constraints. Reasoning about the geometric bodies is performed symbolically by generating a sequence of actions to satisfy each constraint incrementally, which results in the reduction of the object’s available degrees of freedom (DOF). The fundamental reference entity used by Kramer is called a “marker”, that is a point and two orthogonal axes. Seven constraints (coincident, in-line, in-plane, parallelFz, offsetFz, offsetFx and helical) between markers are defined. For a problem involving a single object and constraints between markers on that body, and markers which have invariant attributes, action analysis [7] is used to obtain a solution. Action analysis decides the final configuration of a geometric object, step by step. At each step in solving the object configuration, degrees of freedom analysis decides what action will satisfy one of the body’s as yet unsatisfied constraints, given the available degrees of freedom. It then calculates how that action further reduces the body’s degrees of freedom. At the end of each step, one appropriate action is added to the metaphorical assembly plan. According to Shah and Rogers [8], Kramer’s work represents the most significant development for assembly modelling. This symbolic geometric approach can locate all solutions to constraint conditions, and is computationally attractive compared to an iterative technique, but to implement this method, a large amount of programming is required.
Although many researchers have been actively involved in
assembly modelling, little literature has been reported on feature
based assembly modelling for injection mould design.
Kruth et al. [9] developed a design support system for an
injection mould. Their system supported the assembly design
for injection moulds through high-level functional mould
objects (components and features). Because their system was based on AutoCAD, it could only accommodate wire-frame
and simple solid models.
3. Representation of Injection Mould Assemblies
The two key issues of automated assembly modelling for injection moulds are, representing a mould assembly in computers, and determining the position and orientation of a product- independent part in the assembly. In this section, we present an object-oriented and feature-based representation for assemblies of injection moulds.
The representation of assemblies in a computer involves structural and spatial relationships between individual parts. Such a representation must support the construction of an assembly from all the given parts, changes in the relative positioning of parts, and manipulation of the assembly as a whole. Moreover, the representations of assemblies must meet
the following requirements from designers:
1. It should be possible to have high-level objects ready to use while mould designers think on the level of realworld
objects.
2. The representation of assemblies should encapsulate operational functions to automate routine processes such as pocketing and interference checks. To meet these requirements, a feature-based and object-oriented
hierarchical model is proposed to represent injection moulds. An assembly may be divided into subassemblies, which in turn consists of subassemblies and/or individual components. Thus, a hierarchical model is most appropriate for representing the structural relations between components. A hierarchy implies a definite assembly sequence. In addition, a hierarchical model can provide an explicit representation of the dependency of the position of one part on another.
Feature-based design [10] allows designers to work at a somewhat higher level of abstraction than that possible with the direct use of solid modellers. Geometric features are instanced, sized, and located quickly by the user by specifying a minimum set of parameters, while the feature modeller works out the details. Also, it is easy to make design changes because of the associativities between geometric entities maintained in the data structure of feature modellers. Without features, designers have to be concerned with all the details of geometric construction procedures required by solid modellers, and design changes have to be strictly specified for every entity affected by the change. Moreover, the feature-based representation will provide high-level assembly objects for designers to use. For example, while mould designers think on the level of a realworld object, e.g. a counterbore hole, a feature object of a counterbore hole will be ready in the computer for use.
Object-oriented modelling [11,12] is a new way of thinking about problems using models organised around real-world concepts. The fundamental entity is the object, which combines both data structures and behaviour in a single entity. Objectoriented models are useful for understanding problems and designing programs and databases. In addition, the objectoriented representation of assemblies makes it easy for a “child” object to inherit information from its “parent”.
References
[1]. K. H. Shin and K. Lee, “Design of side cores of injection moulds from automatic detection of interference faces”, Journal of Design and Manufacturing, 3(3), pp. 225–236, December 1993.
[2]. Y. F. Zhang, K. S. Lee, Y. Wang, J. Y. H. Fuh and A. Y. C. Nee, “Automatic slider core creation for designing slider/lifter of injection moulds”, CIRP International Conference and Exhibition on Design and Production of Dies and Moulds, pp. 33–38, Turkey, 19–21 June 1997.
[3]. E. C. Libardi, J. R. Dixon and M. K. Simmon, “Computer environments for design of mechanical assemblies: A research review”, Engineering with Computers, 3(3), pp. 121–136, 1988.
[4]. K. Lee and D. C. Gossard, “A hierarchical data structure for representing assemblies”, Computer-Aided Design, 17(1), pp. 15– 19, January 1985.
[5]. K. Lee and D. Gossard, “Inference of position of components in an assembly”, Computer-Aided Design, 17(1), pp. 20–24, January
1985.
[6]. A. P. Ambler and R. J. Popplestone, “Inferring the positions of bodies from specified spatial relationships”, Artificial Intelligence, 6, pp. 157–174, 1975.
[7]. G. Kramer, Solving Geometric Constraint Systems: A Case Study in Kinematics, MIT Press, Cambridge, MA, 1992.
[8]. J. J. Shah and M. T. Rogers, “Assembly modelling as an extension of feature-based design”, Research in Engineering Design, 5(3&4), pp. 218–237, 1993.
[9]. J. P. Kruth, R. Willems and D. Lecluse, “A design support system using high level mould objects”, CIRP International Conference and Exhibition on Design and Production of Dies and Moulds, pp. 39–44, Turkey, 19–21 June, 1997.
[10]. J. J. Shah, “Assessment of feature technology”, Computer-Aided Design, 23(5), pp. 331–343, June 1991.
[11]. S. R. Gorti, A. Gupta, G. J. Kim, R. D. Sriram and A. Wong, “An objection-oriented representation for product and design process”, Computer-Aided Design, 30(7), pp. 489–501, June 1998.
[12]. J. Rumbaugh, M. Blaha, W. Premerlani, et al. Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.
[13]. Unigraphics Essentials User Manual, Unigraphics Solution Co., Maryland Heights, MO, 1997.
[14]. IMOLD homepage http:://www.eng.nus.edu.sg/imold, Manusoft Plastic Pte Ltd. Singapore.