2019-2020年高中數學 2.2.2 對數函數教案 新人教A版必修1.doc
《2019-2020年高中數學 2.2.2 對數函數教案 新人教A版必修1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數學 2.2.2 對數函數教案 新人教A版必修1.doc(8頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高中數學 2.2.2 對數函數教案 新人教A版必修1 教學目標 (一) 教學知識點 1. 對數函數的概念; 2. 對數函數的圖象與性質. (二) 能力訓練要求 1. 理解對數函數的概念; 2. 掌握對數函數的圖象、性質; 3. 培養(yǎng)學生數形結合的意識. (三)德育滲透目標 1.認識事物之間的普遍聯(lián)系與相互轉化; 2.用聯(lián)系的觀點看問題; 3.了解對數函數在生產生活中的簡單應用. 教學重點 對數函數的圖象、性質. 教學難點 對數函數的圖象與指數函數的關系. 教學過程 一、復習引入: 1、指對數互化關系: 2、 的圖象和性質. a>1 0<a<1 圖 象 性 質 (1)定義域:R (2)值域:(0,+∞) (3)過點(0,1),即x=0時,y=1 (4)在 R上是增函數 (4)在R上是減函數 3、 我們研究指數函數時,曾經討論過細胞分裂問題,某種細胞分裂時,得到的細胞的個數是分裂次數的函數,這個函數可以用指數函數=表示. 現在,我們來研究相反的問題,如果要求這種細胞經過多少次分裂,大約可以得到1萬個,10萬個……細胞,那么,分裂次數就是要得到的細胞個數的函數.根據對數的定義,這個函數可以寫成對數的形式就是. 如果用表示自變量,表示函數,這個函數就是. 引出新課--對數函數. 二、新授內容: 1.對數函數的定義: 函數叫做對數函數,定義域為,值域為. 例1. 求下列函數的定義域: (1); (2); (3). 分析:此題主要利用對數函數的定義域(0,+∞)求解. 解:(1)由>0得,∴函數的定義域是; (2)由得,∴函數的定義域是; (3)由9-得-3, ∴函數的定義域是. 2.對數函數的圖象: 通過列表、描點、連線作與的圖象: 思考:與的圖象有什么關系? 3. 練習:教材第73頁練習第1題. 1.畫出函數y=x及y=的圖象,并且說明這兩個函數的相同性質和不同性質. 解:相同性質:兩圖象都位于y軸右方,都經過點(1,0), 這說明兩函數的定義域都是(0,+∞),且當x=1,y=0. 不同性質:y=x的圖象是上升的曲線,y=的圖象 是下降的曲線,這說明前者在(0,+∞)上是增函數, 后者在(0,+∞)上是減函數. 4.對數函數的性質 由對數函數的圖象,觀察得出對數函數的性質. a>1 0<a<1 圖 象 性 質 定義域:(0,+∞) 值域:R 過點(1,0),即當x=1時,y=0 時 時 時 時 在(0,+∞)上是增函數 在(0,+∞)上是減函數 三、講解范例: 例2.比較下列各組數中兩個值的大小: ⑴; ⑵; ⑶. 解:⑴考查對數函數,因為它的底數2>1,所以它在(0,+∞)上是增函數,于是. ⑵考查對數函數,因為它的底數0<0.3<1,所以它在(0,+∞)上是減函數,于是. 小結1:兩個同底數的對數比較大小的一般步驟: ①確定所要考查的對數函數; ②根據對數底數判斷對數函數增減性; ③比較真數大小,然后利用對數函數的增減性判斷兩對數值的大?。? ⑶當時,在(0,+∞)上是增函數,于是; 當時,在(0,+∞)上是減函數,于是. 小結2:分類討論的思想. 對數函數的單調性取決于對數的底數是大于1還是小于1.而已知條件并未指明,因此需要對底數a進行討論,體現了分類討論的思想,要求學生逐步掌握. 四、練習1。(P73、2)求下列函數的定義域: (1)y=(1-x) (2)y= (3)y= (5 (6) 解:(1)由1-x>0得x<1 ∴所求函數定義域為{x|x<1}; (2)由x≠0,得x≠1,又x>0 ∴所求函數定義域為{x|x>0且x≠1}; (3)由 ∴所求函數定義域為{x|x<}; (4)由 ∴x≥1 ∴所求函數定義域為{x|x≥1}. 練習2、 函數的圖象恒過定點( ) 3、已知函數的定義域與值域都是[0,1], 求a的值。(因時間而定,選講) 五、課堂小結 ⑴對數函數定義、圖象、性質; ⑵對數的定義, 指數式與對數式互換; ⑶比較兩個數的大?。? 六、課后作業(yè): 1.閱讀教材第70~72頁; 2. 《習案》P191~192面。 2.2.2 對數函數及其性質(二) 教學目標 1.教學知識點 1. 對數函數的單調性;2.同底數對數比較大??;3.不同底數對數比較大??; 4.對數形式的復合函數的定義域、值域;?。担畬敌问降膹秃虾瘮档膯握{性. 2.能力訓練要求 4. 掌握對數函數的單調性;2.掌握同底數對數比較大小的方法; 3.掌握不同底數對數比較大小的方法;4.掌握對數形式的復合函數的定義域、值域; 5.掌握對數形式的復合函數的單調性; 6.培養(yǎng)學生的數學應用意識. 3.德育滲透目標 1.用聯(lián)系的觀點分析問題、解決問題; 2.認識事物之間的相互轉化. 教學重點 1.利用對數函數單調性比較同底數對數的大?。? 2.求對數形式的復合函數的定義域、值域的方法; 3.求對數形式的復合函數的單調性的方法. 教學難點 1.不同底數的對數比較大??;2.對數形式的復合函數的單調性的討論. 教學過程 一、 復習引入: 1.對數函數的定義: 函數叫做對數函數,對數函數 的定義域為,值域為. 2、對數函數的性質: a>1 0<a<1 圖 象 性 質 定義域:(0,+∞). 值域:R. 過點(1,0),即當時,. 時 . 時 . 時 . 時. 在(0,+∞)上是增函數. 在(0,+∞)上是減函數. 3.書P73面練習3 ③ 5. 函數y=x+a與的圖象可能是__________ 1 1 o x y 1 1 o x y ① ② 1 1 o x y ③ y 1 1 o x ④ 二、新授內容: 例1.比較下列各組中兩個值的大?。? ⑴; ⑵. (3) 解:⑴,,. ⑵,,. 小結1:引入中間變量比較大小:例1仍是利用對數函數的增減性比較兩個對數的大小,當不能直接比較時,經常在兩個對數中間插入1或0等,間接比較兩個對數的大?。? 練習: 1.比較大?。▊溆妙}) ⑴; ⑵; ⑶ . 例2.已知x =時,不等式 loga (x2 – x – 2)>loga (–x2 +2x + 3)成立, 求使此不等式成立的x的取值范圍. 解:∵x =使原不等式成立. ∴l(xiāng)oga[]>loga 即loga>loga. 而<. 所以y = logax為減函數,故0<a<1. ∴原不等式可化為, 解得. 故使不等式成立的x的取值范圍是 例3.若函數在區(qū)間[a,2a]上的最大值是最小值的3倍, 求a的值。 () 例4.求證:函數f (x) =在(0, 1)上是增函數. 解:設0<x1<x2<1, 則f (x2) – f (x1) = = ∵0<x1<x2<1,∴>1,>1. 則>0, ∴f (x2)>f (x1). 故函數f (x)在(0, 1)上是增函數 例5.已知f (x) = loga (a – ax) (a>1). (1)求f (x)的定義域和值域; (2)判證并證明f (x)的單調性. 解:(1)由a>1,a – ax>0,而a>ax,則x<1. 故f (x)的定義域為(1, +∞), 而ax<a,可知0<a – ax<a, 又a>1. 則loga(a – ax)<lgaa = 1. 取f (x)<1,故函數f (x)的值域為(–∞, 1). (2)設x1>x2>1,又a>1, ∴>,∴<a<, ∴l(xiāng)oga (a –)<loga (a –),即f (x1)< f (x2),故f (x)在(1, +∞)上為減函數. 例6.書P72面例9。指導學生看書。 例7.(備選題) 求下列函數的定義域、值域: ⑴; ⑵; 解:⑴∵對一切實數都恒成立, ∴函數定義域為R. 從而 即函數值域為. ⑵要使函數有意義,則須: , 由 ∴在此區(qū)間內 , ∴ . 從而 即:值域為, ∴定義域為[-1,5],值域為. 例8.(備選題)已知f (x) = logax (a>0,a≠1),當0<x1<x2時, 試比較與的大小,并利用函數圖象給予幾何解釋. 【解析】因為 = 又0<x1<x2, ∴x1 + x2 – 2>0, 即x1 + x2>2, ∴>1. 于是當a>1時,>0. 此時> 同理0<a<1時< 或:當a>1時,此時函數y = logax的圖象向上凸. 顯然,P點坐標為,又A、B兩點的中點Q的縱坐標為[ f (x1) + f (x2)], 由幾何性質可知 >. 當0<a<1時,函數圖象向下凹. 從幾何角度可知<0, B x1 x2 x y Q A (x1, f (x1)) (x2, f (x2)) 此時< 四、課堂小結: 2. 比較對數大小的方法; 2.對數復合函數單調性的判斷; 3.對數復合函數定義域、值域的求法. 五、課后作業(yè) 1.《習案》P193與P195面。 備選題 2.討論函數在上的單調性.(減函數) 3.已知函數y=(2-)在[0,1]上是減函數,求a的取值范圍. 解:∵a>0且a≠1, 當a>1時, ∴1<a<2. 當0- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數學 2.2.2 對數函數教案 新人教A版必修1 2019 2020 年高 數學 2.2 對數 函數 教案 新人 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://weibangfood.com.cn/p-2563231.html