高考數(shù)學理一輪資源庫 第7章學案36

上傳人:仙*** 文檔編號:43051566 上傳時間:2021-11-29 格式:DOC 頁數(shù):9 大?。?92.50KB
收藏 版權申訴 舉報 下載
高考數(shù)學理一輪資源庫 第7章學案36_第1頁
第1頁 / 共9頁
高考數(shù)學理一輪資源庫 第7章學案36_第2頁
第2頁 / 共9頁
高考數(shù)學理一輪資源庫 第7章學案36_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學理一輪資源庫 第7章學案36》由會員分享,可在線閱讀,更多相關《高考數(shù)學理一輪資源庫 第7章學案36(9頁珍藏版)》請在裝配圖網上搜索。

1、 精品資料 學案36 直接證明與間接證明 導學目標: 1.了解直接證明的兩種基本方法——分析法和綜合法;了解分析法和綜合法的思考過程及特點.2.了解間接證明的一種基本方法——反證法,了解反證法的思考過程及特點. 自主梳理 1.直接證明 (1)綜合法 ①定義:從已知條件出發(fā),以______________________為依據,逐步下推,直到推出所要證明的結論為止,這種證明方法叫做綜合法. ②框圖表示:→→→…→(其中P表示已知條件,Q表示要證的結論). (2)分析法 ①定義:從問題的結論出發(fā),追溯導致結論成立的

2、條件,逐步上溯,直到使________________和______________________為止.這種證明方法叫做分析法. ②框圖表示:→→→…→. 2.間接證明 反證法:假設原命題________(即在原命題的條件下,結論不成立),經過正確的推理,最后得出________,因此說明假設錯誤,從而證明了原命題成立,這樣的證明方法叫做反證法. 自我檢測 1.分析法是從要證的結論出發(fā),尋求使它成立的________條件.(填“充分”、“必要”或“充要”) 2.(2010揭陽高三統(tǒng)考)用反證法證明“如果a>b,那么>”的假設內容應是__________________. 3.設

3、a、b、c是互不相等的正數(shù),則下列不等式中不恒成立的是________.(填序號). ①|a-c|≤|a-b|+|c-b|; ②a2+≥a+; ③-<-; ④|a-b|+≥2. 4.已知a+b>0,則+與+的大小關系為____________________. 5.(2010東北三省四市聯(lián)考)設x、y、z∈R+,a=x+,b=y(tǒng)+,c=z+,證明a,b,c中至少有一個不小于2. 探究點一 綜合法 例1 已知a,b,c都是實數(shù),求證:a2+b2+c2≥(a+b+c)2≥ab+bc+ca. 變式遷移1 設a,b,c>0,證明

4、: ++≥a+b+c. 探究點二 分析法 例2 若a,b,c是不全相等的正數(shù),求證: lg +lg +lg >lg a+lg b+lg c. 變式遷移2 已知a>0,求證: -≥a+-2. 探究點三 反證法 例3 若x,y都是正實數(shù),且x+y>2, 求證:<2與<2中至少有一個成立. 式遷移3 若a,b,c均為實數(shù),且a=x2-2y+,b=y(tǒng)2-2z+,c=z2-2x+.求證:a,b,c中至少有一個大于0. 轉化與化歸思想 例 (14分)(2

5、010上海改編)若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m. (1)若x2-1比1遠離0,求x的取值范圍. (2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab. 多角度審題 (1)本題屬新定義題,根據“遠離”的含義列出不等式,然后加以求解.(2)第(2)小題,實質是證明不等式|a3+b3-2ab|>|a2b+ab2-2ab|成立.證明時注意提取公因式及配方法的運用. 【答題模板】 (1)解 由題意得>1, 即x2-1>1或x2-1<-1.[2分] 由x2-1>1,得x2>2,即x<-或x>; 由x2-1<-1,得x∈?. 綜上可知

6、x的取值范圍為(-∞,-)∪(,+∞).[4分] (2)證明 由題意知即證>成立.[8分] ∵a≠b,且a、b都為正數(shù), ∴===(a-b)2, = =ab(-)2=(a-b)2,[10分] 即證(a-b)2-(a-b)2>0, 即證(a-b-a+b)(a-b+a-b)>0, 需證>0,[12分] 即證(a+b)(a-b)2>0,∵a、b都為正數(shù)且a≠b, ∴上式成立.故原命題成立.[14分] 【突破思維障礙】 1.準確理解題意,提煉出相應不等式是解決問題的關鍵. 2.代數(shù)式|a3+b3-2ab|與|a2b+ab2-2ab|中的絕對值符號去掉為后續(xù)等價變形提供了方便.

7、 【易錯點剖析】 1.推理論證能力較差,絕對值符號不會去. 2.運用能力較差,不能有效地進行式子的等價變形或中間變形出錯. 1.綜合法是從條件推導到結論的思維方法,它是從已知條件出發(fā),經過逐步的推理,最后達到待證的結論.即由因導果. 2.分析法是從待證結論出發(fā),一步一步地尋求結論成立的充分條件,最后達到題設的已知條件或已被證明的事實.即執(zhí)果索因,用分析法尋找解題思路,再用綜合法書寫,這樣比較有條理,叫分析綜合法. 3.用反證法證明問題的一般步驟: (1)反設:假設命題的結論不成立,即假定原結論的反面為真;(否定結論) (2)歸謬:從反設和已知條件出發(fā),經過一系列正確的邏

8、輯推理,得出矛盾結果;(推導矛盾) (3)存真:由矛盾結果斷定反設不真,從而肯定原結論成立.(結論成立) (滿分:90分) 一、填空題(每小題6分,共48分) 1.用反證法證明命題“若整系數(shù)一元二次方程ax2+bx+c=0 (a≠0)有有理數(shù)根,那么a、b、c中至少有一個是偶數(shù)”.假設內容應為____________________________________. 2.(2010無錫模擬)設a,b是兩個實數(shù),給出下列條件: (1)a+b>1;(2)a+b=2;(3)a+b>2; (4)a2+b2>2;(5)ab>1. 其中能推出:“a,b中至少有一個大于1”的條件是

9、______.(填序號) 3.設a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,則“PQR>0”是“P、Q、R同時大于零”的________條件. 4.(2010安徽)若a>0,b>0,a+b=2,則下列不等式對一切滿足條件的a,b恒成立的是________(寫出所有正確命題的序號). ①ab≤1;②+≤;③a2+b2≥2;④a3+b3≥3; ⑤+≥2. 5.如果△A1B1C1的三個內角的余弦值分別等于△A2B2C2的三個內角的正弦值,則△A2B2C2是________三角形(填“銳角”“鈍角”或“直角”). 6.(2010江蘇前黃高級中學模擬)某同學準備

10、用反證法證明如下一個問題:函數(shù)f(x)在[0,1]上有意義,且f(0)=f(1),如果對于不同的x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求證:|f(x1)-f(x2)|<.那么他的反設應該是__________________________________________________ ________________________________________________________________________. 7.對于任意實數(shù)a,b定義運算a*b=(a+1)(b+1)-1,給出以下結論: ①對于任意實數(shù)a,b,c,有a*(b+c)

11、=(a*b)+(a*c); ②對于任意實數(shù)a,b,c,有a*(b*c)=(a*b)*c; ③對于任意實數(shù)a,有a*0=a.則以上結論正確的是________.(寫出你認為正確的結論的所有序號) 8.(2011天津)已知log2a+log2b≥1,則3a+9b的最小值為________. 二、解答題(共42分) 9.(14分)已知非零向量a、b,a⊥b,求證:≤. 10.(14分)已知a、b、c>0,求證:a3+b3+c3≥(a2+b2+c2)(a+b+c). 11.(14分)已知a、b、c∈(0,1),求證:(1-a)b,(

12、1-b)c,(1-c)a不能同時大于. 學案36 直接證明與間接證明 答案 自主梳理 1.(1)①已知的定義、公理、定理 (2)①結論成立的條件 已知條件或已知事實吻合 2.不成立 矛盾 自我檢測 1.充分 解析 由分析法的定義可知. 2.≤ 解析 >的否定是≤. 3.④ 解析 ④選項成立時需得證a-b>0.①中|a-b|+|c-b|≥|(a-b)-(c-b)|=|a-c|,②作差可證; ③移項平方可證. 4.+≥+ 解析?。剑? =(a-b)=. ∵a+b>0,(a-b)2≥0,∴≥0. ∴+≥+. 5.證明 假設a,b,

13、c均小于2,則a+b+c<6. ① 又a+b+c=x++y++z+ =(x+)+(y+)+(z+)≥6, 這與①式相矛盾,∴假設不正確. ∴a,b,c至少有一個不小于2. 課堂活動區(qū) 例1 解題導引 綜合法證明不等式,要特別注意基本不等式的運用和對題設條件的運用.這里可從基本不等式相加的角度先證得a2+b2+c2≥ab+bc+ca成立,再進一步得出結論. 證明 ∵a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca, 三式相加得a2+b2+c2≥ab+bc+ca, ∴3a2+3b2+3c2≥(a2+b2+c2)+2(ab+bc+ca) =(a+b+c)2. ∴a

14、2+b2+c2≥(a+b+c)2; ∵a2+b2+c2≥ab+bc+ca, ∴a2+b2+c2+2(ab+bc+ca)≥ab+bc+ca+2(ab+bc+ca), ∴(a+b+c)2≥3(ab+bc+ca). ∴原命題得證. 變式遷移1 證明 ∵a,b,c>0,根據基本不等式, 有+b≥2a,+c≥2b,+a≥2c. 三式相加:+++a+b+c≥2(a+b+c). 即++≥a+b+c. 例2 解題導引 當所給的條件簡單,而所證的結論復雜,一般采用分析法.含有根號、對數(shù)符號、絕對值的不等式,若從題設不易推導時,可以考慮分析法. 證明 要證lg+lg+lg>lg a+lg b+

15、lg c, 只需證lg>lg(abc), 只需證>abc.(中間結果) 因為a,b,c是不全相等的正數(shù), 則≥>0,≥>0,≥>0. 且上述三式中的等號不全成立, 所以>abc.(中間結果) 所以lg+lg+lg>lg a+lg b+lg c. 變式遷移2 證明 要證 -≥a+-2, 只要證 +2≥a++. ∵a>0,故只要證 2≥2, 即a2++4 +4 ≥a2+2++2+2, 從而只要證2≥, 只要證4≥2, 即a2+≥2,而該不等式顯然成立,故原不等式成立. 例3 解題導引 (1)當一個命題的結論是以“至多”、“至少”、“惟一”或以否定形式出現(xiàn)時,宜用反證

16、法來證,反證法的關鍵是在正確的推理下得出矛盾,矛盾可以是①與已知條件矛盾,②與假設矛盾,③與定義、公理、定理矛盾,④與事實矛盾等方面,反證法常常是解決某些“疑難”問題的有力工具,是數(shù)學證明中的一件有力武器. (2)利用反證法證明問題時,要注意與之矛盾的定理不能是用本題的結論證明的定理,否則,將出現(xiàn)循環(huán)論證的錯誤. 證明 假設<2和<2都不成立, 則有≥2和≥2同時成立, 因為x>0且y>0, 所以1+x≥2y,且1+y≥2x, 兩式相加,得2+x+y≥2x+2y, 所以x+y≤2,這與已知條件x+y>2相矛盾, 因此<2與<2中至少有一個成立. 變式遷移3 證明 假設a,b,

17、c都不大于0,即a≤0,b≤0,c≤0. ∵a=x2-2y+,b=y(tǒng)2-2z+,c=z2-2x+, ∴x2-2y++y2-2z++z2-2x+ =(x-1)2+(y-1)2+(z-1)2+(π-3)≤0, ① 又∵(x-1)2+(y-1)2+(z-1)2≥0,π-3>0, ∴(x-1)2+(y-1)2+(z-1)2+(π-3)>0. ② ①式與②式矛盾, ∴假設不成立, 即a,b,c中至少有一個大于0. 課后練習區(qū) 1.假設a、b、c都不是偶數(shù) 2.(3) 解析 若a=,b=,則a+b>1, 但a<1,b<1,故(1)推不出; 若a=b=1,則a+b=2,故(2

18、)推不出; 若a=-2,b=-3,則a2+b2>2,故(4)推不出; 若a=-2,b=-3,則ab>1,故(5)推不出; 對于(3),即a+b>2,則a,b中至少有一個大于1, 反證法:假設a≤1且b≤1, 則a+b≤2與a+b>2矛盾, 因此假設不成立,故a,b中至少有一個大于1. 3.充要 解析 必要性是顯然成立的,當PQR>0時,若P、Q、R不同時大于零,則其中兩個為負,一個為正,不妨設P>0,Q<0,R<0,則Q+R=2c<0,這與c>0矛盾,即充分性也成立. 4.①③⑤ 解析?、賏b≤()2=1,成立. ②欲證+≤, 即證a+b+2≤2,即2≤0,顯然不成立.

19、 ③欲證a2+b2=(a+b)2-2ab≥2, 即證4-2ab≥2, 即ab≤1,由①知成立. ④a3+b3=(a+b)(a2-ab+b2)≥3 ?a2-ab+b2≥?(a+b)2-3ab≥ ?4-≥3ab?ab≤,由①知,ab≤不恒成立. ⑤欲證+≥2, 即證≥2,即ab≤1,由①知成立. 5.鈍角 解析 由條件知,△A1B1C1的三個內角的余弦值均大于0,則△A1B1C1是銳角三角形,假設△A2B2C2是銳角三角形, 由得 那么,A2+B2+C2=, 這與三角形內角和為π相矛盾,所以假設不成立,所以△A2B2C2是鈍角三角形. 6.“?x1,x2∈[0,1],使

20、得|f(x1)-f(x2)|<|x1-x2|,則|f(x1)-f(x2)|≥” 7.②③ 解析 按新定義,可以驗證a*(b+c)≠(a*b)+(a*c); 所以①不成立;而a*(b*c)=(a*b)*c成立, a*0=(a+1)(0+1)-1=a.所以正確的結論是②③. 8.18 解析 由log2a+log2b≥1得log2(ab)≥1,即ab≥2, ∴3a+9b=3a+32b≥23(當且僅當3a=32b,即a=2b時“=”號成立). 又∵a+2b≥2≥4(當且僅當a=2b時“=”成立), ∴3a+9b≥232=18. 即當a=2b時,3a+9b有最小值18. 9.證明 

21、∵a⊥b,∴ab=0. (2分) 要證≤,只需證:|a|+|b|≤|a-b|, (6分) 平方得:|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2ab), (10分) 只需證:|a|2+|b|2-2|a||b|≥0, (12分) 即(|a|-|b|)2≥0,顯然成立.故原不等式得證. (14分) 10.證明 ∵a2+b2≥2ab,a、b、c>0, ∴(a2+b2)(a+b)≥2ab(a+b), (3分) ∴a3+b3+a2b+ab2≥2ab(a+b)=2a2b+2ab2, ∴a3+b3≥a2b+ab2.(7分) 同

22、理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2, 將三式相加得, 2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac2.(10分) ∴3(a3+b3+c3)≥(a3+a2b+a2c)+(b3+b2a+b2c)+(c3+c2a+c2b)=(a+b+c)(a2+b2+c2). ∴a3+b3+c3≥(a2+b2+c2)(a+b+c).(14分) 11.證明 方法一 假設三式同時大于, 即(1-a)b>,(1-b)c>,(1-c)a>,(3分) ∵a、b、c∈(0,1), ∴三式同向相乘得(1-a)b(1-b)c(1-c)a>.(8分) 又(1-a)a≤2=,(10分) 同理(1-b)b≤,(1-c)c≤, ∴(1-a)a(1-b)b(1-c)c≤,(12分) 這與假設矛盾,故原命題正確.(14分) 方法二 假設三式同時大于, ∵00,(2分) ≥ > =,(8分) 同理>,>,(10分) 三式相加得>,這是矛盾的,故假設錯誤, ∴原命題正確.(14分)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!