高考數(shù)學(xué)理一輪資源庫(kù) 第7章學(xué)案37
《高考數(shù)學(xué)理一輪資源庫(kù) 第7章學(xué)案37》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理一輪資源庫(kù) 第7章學(xué)案37(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料 學(xué)案37 數(shù)學(xué)歸納法 導(dǎo)學(xué)目標(biāo): 1.了解數(shù)學(xué)歸納法的原理.2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題. 自主梳理 1.歸納法 由一系列有限的特殊事例得出一般結(jié)論的推理方法叫歸納法.根據(jù)推理過(guò)程中考查的對(duì)象是涉及事物的全體或部分可分為完全歸納法和不完全歸納法. 2.?dāng)?shù)學(xué)歸納法 設(shè){Pn}是一個(gè)與正整數(shù)相關(guān)的命題集合,如果:(1)證明起始命題P1(或P0)成立;(2)在假設(shè)Pk成立的前提下,推出Pk+1也成立,那么可以斷定{Pn}對(duì)一切正整數(shù)成立. 3.?dāng)?shù)學(xué)歸納法公理 (1)(歸納奠基)證明當(dāng)n取第一個(gè)值_
2、_________時(shí)命題成立. (2)(歸納遞推)假設(shè)______________________時(shí)命題成立,證明當(dāng)________時(shí)命題也成立.只要完成這兩個(gè)步驟,就可以斷定命題對(duì)從n0開(kāi)始的所有正整數(shù)n都成立. 自我檢測(cè) 1.用數(shù)學(xué)歸納法證明:“1+a+a2+…+an+1= (a≠1)”在驗(yàn)證n=1時(shí),左端計(jì)算所得的項(xiàng)為_(kāi)______________________________________________________________. 2.如果命題P(n)對(duì)于n=k (k∈N*)時(shí)成立,則它對(duì)n=k+2也成立,又若P(n)對(duì)于n=2時(shí)成立,則下列結(jié)論中正確的序號(hào)有___
3、_____.
①P(n)對(duì)所有正整數(shù)n成立;
②P(n)對(duì)所有正偶數(shù)n成立;
③P(n)對(duì)所有正奇數(shù)n成立;
④P(n)對(duì)所有大于1的正整數(shù)n成立.
3.證明<1++++…+
4、學(xué)歸納法證明等式 例1 對(duì)于n∈N*,用數(shù)學(xué)歸納法證明: 1n+2(n-1)+3(n-2)+…+(n-1)2+n1 =n(n+1)(n+2). 變式遷移1 用數(shù)學(xué)歸納法證明: 對(duì)任意的n∈N*,1-+-+…+-=++…+. 探究點(diǎn)二 用數(shù)學(xué)歸納法證明不等式 例2 用數(shù)學(xué)歸納法證明:對(duì)一切大于1的自然數(shù),不等式…>均成立. 變式遷移2 已知m為正整數(shù),用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx. 探究點(diǎn)三 用數(shù)學(xué)歸納法證明整除問(wèn)題 例3 用數(shù)學(xué)歸納法證明:當(dāng)n∈N*時(shí),
5、an+1+(a+1)2n-1能被a2+a+1整除. 變式遷移3 用數(shù)學(xué)歸納法證明:當(dāng)n為正整數(shù)時(shí),f(n)=32n+2-8n-9能被64整除. 從特殊到一般的思想 例 (14分)已知等差數(shù)列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=1-bn. (1)求數(shù)列{an}、{bn}的通項(xiàng)公式; (2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試比較與Sn+1的大小,并說(shuō)明理由. 【答題模板】 解 (1)由已知得,又∵{an}的公差大于0, ∴a5>a2,∴a2=3,a5=9.
6、
∴d===2,a1=1,
∴an=1+(n-1)2=2n-1.[2分]
∵Tn=1-bn,∴b1=,當(dāng)n≥2時(shí),Tn-1=1-bn-1,
∴bn=Tn-Tn-1=1-bn-,
化簡(jiǎn),得bn=bn-1,[4分]
∴{bn}是首項(xiàng)為,公比為的等比數(shù)列,即bn=n-1=,
∴an=2n-1,bn=.[6分]
(2)∵Sn=n=n2,∴Sn+1=(n+1)2,=.
以下比較與Sn+1的大?。?
當(dāng)n=1時(shí),=,S2=4,∴
7、1.
下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=4時(shí),已證.
②假設(shè)當(dāng)n=k (k∈N*,k≥4)時(shí),>Sk+1,
即>(k+1)2.[11分]
那么,n=k+1時(shí),==3>3(k+1)2=3k2+6k+3=(k2+4k+4)+2k2+2k-1>[(k+1)+1]2=S(k+1)+1,∴n=k+1時(shí),>Sn+1也成立.
由①②可知n∈N*,n≥4時(shí),>Sn+1都成立.
綜上所述,當(dāng)n=1,2,3時(shí),
8、通過(guò)觀察、分析、歸納、猜想,探索出一般規(guī)律. 2.?dāng)?shù)列是定義在N*上的函數(shù),這與數(shù)學(xué)歸納法運(yùn)用的范圍是一致的,并且數(shù)列的遞推公式與歸納原理實(shí)質(zhì)上是一致的,數(shù)列中有不少問(wèn)題常用數(shù)學(xué)歸納法解決. 【易錯(cuò)點(diǎn)剖析】 1.嚴(yán)格按照數(shù)學(xué)歸納法的三個(gè)步驟書寫,特別是對(duì)初始值的驗(yàn)證不可省略,有時(shí)要取兩個(gè)(或兩個(gè)以上)初始值進(jìn)行驗(yàn)證;初始值的驗(yàn)證是歸納假設(shè)的基礎(chǔ). 2.在進(jìn)行n=k+1命題證明時(shí),一定要用n=k時(shí)的命題,沒(méi)有用到該命題而推理證明的方法不是數(shù)學(xué)歸納法. 1.?dāng)?shù)學(xué)歸納法:先證明當(dāng)n取第一個(gè)值n0時(shí)命題成立,然后假設(shè)當(dāng)n=k (k∈N*,k≥n0)時(shí)命題成立,并證明當(dāng)n=k+1時(shí)命題
9、也成立,那么就證明了這個(gè)命題成立.這是因?yàn)榈谝徊绞紫茸C明了n取第一個(gè)值n0時(shí),命題成立,這樣假設(shè)就有了存在的基礎(chǔ),至少k=n0時(shí)命題成立,由假設(shè)合理推證出n=k+1時(shí)命題也成立,這實(shí)質(zhì)上是證明了一種循環(huán),如驗(yàn)證了n0=1成立,又證明了n=k+1也成立,這就一定有n=2成立,n=2成立,則n=3成立,n=3成立,則n=4也成立,如此反復(fù)以至無(wú)窮,對(duì)所有n≥n0的整數(shù)就都成立了. 2.(1)第①步驗(yàn)證n=n0使命題成立時(shí)n0不一定是1,是使命題成立的最小正整數(shù).(2)第②步證明n=k+1時(shí)命題也成立的過(guò)程中一定要用到歸納遞推,否則就不是數(shù)學(xué)歸納法. (滿分:90分) 一、填空題(
10、每小題6分,共48分) 1.用數(shù)學(xué)歸納法證明命題“當(dāng)n是正奇數(shù)時(shí),xn+yn能被x+y整除”,在第二步時(shí),正確的證法是________(填序號(hào)). ①假設(shè)n=k(k∈N*)時(shí)命題成立,證明n=k+1命題成立; ②假設(shè)n=k(k是正奇數(shù))時(shí)命題成立,證明n=k+1命題成立; ③假設(shè)n=2k+1 (k∈N*)時(shí)命題成立,證明n=k+1命題成立; ④假設(shè)n=k(k是正奇數(shù))時(shí)命題成立,證明n=k+2命題成立. 2.已知f(n)=+++…+,則f(n)中共有____________項(xiàng);當(dāng)n=2時(shí),f(2)=____________. 3.如果命題P(n)對(duì)n=k成立,則它對(duì)n=k+1也成
11、立,現(xiàn)已知P(n)對(duì)n=4不成立,則下列結(jié)論正確的是________(填序號(hào)). ①P(n)對(duì)n∈N*成立; ②P(n)對(duì)n>4且n∈N*成立; ③P(n)對(duì)n<4且n∈N*成立; ④P(n)對(duì)n≤4且n∈N*不成立. 4.(2010泰州模擬)用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上 ________________________________________________________________________. 5.(2010淮南調(diào)研)若f(n)=12+22+32+…+(2n)2,則f(k+1)與f(k)的遞推關(guān)系式是_
12、___________________. 6.用數(shù)學(xué)歸納法證明“1+2+3+…+n+…+3+2+1=n2 (n∈N*)”時(shí),從n=k到n=k+1時(shí),該式左邊應(yīng)添加的代數(shù)式是________. 7.(2010南京模擬)用數(shù)學(xué)歸納法證明不等式++…+>的過(guò)程中,由n=k推導(dǎo)n=k+1時(shí),不等式的左邊增加的式子是____________________. 8.凸n邊形有f(n)條對(duì)角線,凸n+1邊形有f(n+1)條對(duì)角線,則f(n+1)=f(n)+________. 二、解答題(共42分) 9.(12分)用數(shù)學(xué)歸納法證明1+≤1+++…+≤+n (n∈N*).
13、
10.(14分)數(shù)列{an}滿足an>0,Sn=(an+),求S1,S2,猜想Sn,并用數(shù)學(xué)歸納法證明.
11.(16分)(高考預(yù)測(cè)題)已知函數(shù)f(x)=e-(其中e為自然對(duì)數(shù)的底數(shù)).
(1)判斷f(x)的奇偶性;
(2)在(-∞,0)上求函數(shù)f(x)的極值;
(3)用數(shù)學(xué)歸納法證明:當(dāng)x>0時(shí),對(duì)任意正整數(shù)n都有f() 14、有n+2項(xiàng),∴左端=1+a+a2.
2.②
解析 由n=2成立,根據(jù)遞推關(guān)系“P(n)對(duì)于n=k時(shí)成立,則它對(duì)n=k+2也成立”,可以推出n=4時(shí)成立,再推出n=6時(shí)成立,…,依次類推,P(n)對(duì)所有正偶數(shù)n成立”.
3.1+++
解析 當(dāng)n=2時(shí),中間的式子
1+++=1+++.
4.5
解析 當(dāng)n=1時(shí),21=12+1;
當(dāng)n=2時(shí),22<22+1;當(dāng)n=3時(shí),23<32+1;
當(dāng)n=4時(shí),24<42+1.而當(dāng)n=5時(shí),25>52+1,
∴n0=5.
5.,,,
課堂活動(dòng)區(qū)
例1 解題導(dǎo)引 用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的一些等式命題,關(guān)鍵在于弄清等式兩邊的構(gòu)成規(guī)律 15、:等式的兩邊各有多少項(xiàng),由n=k到n=k+1時(shí),等式的兩邊會(huì)增加多少項(xiàng),增加怎樣的項(xiàng).
證明 設(shè)f(n)=1n+2(n-1)+3(n-2)+…+(n-1)2+n1.
(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;
(2)假設(shè)當(dāng)n=k (k≥1且k∈N*)時(shí)等式成立,
即1k+2(k-1)+3(k-2)+…+(k-1)2+k1
=k(k+1)(k+2),
則當(dāng)n=k+1時(shí),
f(k+1)=1(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-1]2+(k+1)1
=f(k)+1+2+3+…+k+(k+1)
=k(k+1)(k+2)+(k+1)(k+1+1 16、)
=(k+1)(k+2)(k+3).
由(1)(2)可知當(dāng)n∈N*時(shí)等式都成立.
變式遷移1 證明 (1)當(dāng)n=1時(shí),
左邊=1-===右邊,
∴等式成立.
(2)假設(shè)當(dāng)n=k (k≥1,k∈N*)時(shí),等式成立,即
1-+-+…+-
=++…+.
則當(dāng)n=k+1時(shí),
1-+-+…+-+-
=++…++-
=++…+++
=++…+++,
即當(dāng)n=k+1時(shí),等式也成立,
所以由(1)(2)知對(duì)任意的n∈N*等式都成立.
例2 解題導(dǎo)引 用數(shù)學(xué)歸納法證明不等式問(wèn)題時(shí),從n=k到n=k+1的推證過(guò)程中,證明不等式的常用方法有比較法、分析法、綜合法、放縮法等.
證明 17、 (1)當(dāng)n=2時(shí),左邊=1+=;右邊=.
∵左邊>右邊,∴不等式成立.
(2)假設(shè)當(dāng)n=k (k≥2,且k∈N*)時(shí)不等式成立,
即…>.
則當(dāng)n=k+1時(shí),
…
>==
>==.
∴當(dāng)n=k+1時(shí),不等式也成立.
由(1)(2)知,對(duì)于一切大于1的自然數(shù)n,不等式都成立.
變式遷移2 證明 (1)當(dāng)m=1時(shí),原不等式成立;
當(dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,
因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;
(2)假設(shè)當(dāng)m=k(k≥2,k∈N*)時(shí),不等式成立,
即(1+x)k≥1+kx,則當(dāng)m=k+1時(shí),
∵x>-1,∴1+x>0.
于是在不等 18、式(1+x)k≥1+kx兩邊同時(shí)乘以1+x得,
(1+x)k(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2
≥1+(k+1)x.
所以(1+x)k+1≥1+(k+1)x,
即當(dāng)m=k+1時(shí),不等式也成立.
綜合(1)(2)知,對(duì)一切正整數(shù)m,不等式都成立.
例3 解題導(dǎo)引 用數(shù)學(xué)歸納法證明整除問(wèn)題,由k過(guò)渡到k+1時(shí)常使用“配湊法”.在證明n=k+1成立時(shí),先將n=k+1時(shí)的原式進(jìn)行分拆、重組或者添加項(xiàng)等方式進(jìn)行整理,最終將其變成一個(gè)或多個(gè)部分的和,其中每個(gè)部分都能被約定的數(shù)(或式子)整除,從而由部分的整除性得出整體的整除性,最終證得n=k+1時(shí)也成立.
證明 (1 19、)當(dāng)n=1時(shí),a2+(a+1)=a2+a+1能被a2+a+1整除.
(2)假設(shè)當(dāng)n=k (k≥1且k∈N*)時(shí),
ak+1+(a+1)2k-1能被a2+a+1整除,
則當(dāng)n=k+1時(shí),
ak+2+(a+1)2k+1=aak+1+(a+1)2(a+1)2k-1
=aak+1+a(a+1)2k-1+(a2+a+1)(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,
由假設(shè)可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,
∴ak+2+(a+1)2k+1也能被a2+a+1整除,
即n=k+1時(shí)命題也成立.
綜合(1)(2)知, 20、對(duì)任意的n∈N*命題都成立.
變式遷移3 證明 (1)當(dāng)n=1時(shí),f(1)=34-8-9=64,
命題顯然成立.
(2)假設(shè)當(dāng)n=k (k≥1,k∈N*)時(shí),
f(k)=32k+2-8k-9能被64整除.則當(dāng)n=k+1時(shí),
32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+98k+99-8(k+1)-9=9(32k+2-8k-9)+64(k+1)
即f(k+1)=9f(k)+64(k+1)
∴n=k+1時(shí)命題也成立.
綜合(1)(2)可知,對(duì)任意的n∈N*,命題都成立.
課后練習(xí)區(qū)
1.④
解析?、?、②、③中,k+1不一定表示奇數(shù),只有④中k為奇數(shù),k+2 21、為奇數(shù).
2.n2-n+1 ++
3.④
解析 由題意可知,P(n)對(duì)n=3不成立(否則P(n)對(duì)n=4也成立).同理可推P(n)對(duì)n=2,n=1也不成立.
4.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
解析 ∵當(dāng)n=k時(shí),左端=1+2+3+…+k2,
當(dāng)n=k+1時(shí),
左端=1+2+3+…+k2+(k2+1)+…+(k+1)2,
∴當(dāng)n=k+1時(shí),左端應(yīng)在n=k的基礎(chǔ)上加上
(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.
5.f(k+1)=f(k)+(2k+1)2+(2k+2)2
解析 ∵f(k)=12+22+…+(2k)2
∴f(k+ 22、1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2,
∴f(k+1)=f(k)+(2k+1)2+(2k+2)2.
6.2k+1
解析 ∵當(dāng)n=k+1時(shí),
左邊=1+2+…+k+(k+1)+k+…+2+1,
∴從n=k到n=k+1時(shí),應(yīng)添加的代數(shù)式為(k+1)+k=2k+1.
7.
解析 不等式的左邊增加的式子是
+-=.
8.n-1
解析 ∵f(4)=f(3)+2,f(5)=f(4)+3,
f(6)=f(5)+4,…,∴f(n+1)=f(n)+n-1.
9.證明 (1)當(dāng)n=1時(shí),左邊=1+,右邊=+1,
∴≤1+≤,命題成立.(2分)
當(dāng)n=2時(shí),左 23、邊=1+=2;右邊=+2=,
∴2<1+++<,命題成立.(4分)
(2)假設(shè)當(dāng)n=k(k≥2,k∈N*)時(shí)命題成立,
即1+<1+++…+<+k,(6分)
則當(dāng)n=k+1時(shí),
1+++…++++…+>1++2k=1+.(8分)
又1+++…++++…+<+k+2k=+(k+1),
即n=k+1時(shí),命題也成立.(10分)
由(1)(2)可知,命題對(duì)所有n∈N*都成立.(12分)
10.解 ∵an>0,∴Sn>0,
由S1=(a1+),變形整理得S=1,
取正根得S1=1.
由S2=(a2+)及a2=S2-S1=S2-1得
S2=(S2-1+),
變形整理得S=2,取 24、正根得S2=.
同理可求得S3=.由此猜想Sn=.(6分)
用數(shù)學(xué)歸納法證明如下:
(1)當(dāng)n=1時(shí),上面已求出S1=1,結(jié)論成立.(8分)
(2)假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即Sk=.(9分)
那么,當(dāng)n=k+1時(shí),
Sk+1=(ak+1+)=(Sk+1-Sk+)
=(Sk+1-+).
整理得S=k+1,取正根得Sk+1=.
故當(dāng)n=k+1時(shí),結(jié)論成立.(13分)
由(1)、(2)可知,對(duì)一切n∈N*,Sn=都成立.
(14分)
11.(1)解 ∵函數(shù)f(x)定義域?yàn)閧x∈R|x≠0}
且f(-x)=e-=e-=f(x),
∴f(x)是偶函數(shù).(4分)
(2)解 25、當(dāng)x<0時(shí),f(x)=e,
f′(x)=e+e(-)
=-e(2x+1),(6分)
令f′(x)=0有x=-,
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x
(-∞,-)
-
(-,0)
f′(x)
+
0
-
f(x)
增
極大值
減
由表可知:當(dāng)x=-時(shí),f(x)取極大值4e-2,
無(wú)極小值.(10分)
(3)證明 當(dāng)x>0時(shí)f(x)=e-,
∴f()=x2e-x.
考慮到:x>0時(shí),不等式f() 26、
①當(dāng)n=1時(shí),設(shè)g(x)=ex-x(x>0),
∵x>0時(shí),g′(x)=ex-1>0,∴g(x)是增函數(shù),
故g(x)>g(0)=1>0,即ex>x(x>0).
所以當(dāng)n=1時(shí),不等式(ⅰ)成立.(13分)
②假設(shè)n=k(k≥1,k∈N*)時(shí),不等式(ⅰ)成立,
即xk
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國(guó)人民警察節(jié)(筑牢忠誠(chéng)警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭(zhēng)當(dāng)公安隊(duì)伍鐵軍
- XX國(guó)企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國(guó)青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長(zhǎng)會(huì)長(zhǎng)長(zhǎng)的路慢慢地走