當(dāng)前位置:
首頁 > 圖紙專區(qū) > 高中資料 > 2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 第二章 推理與證明學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測 新人教A版選修2-2.doc
2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 第二章 推理與證明學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測 新人教A版選修2-2.doc
上傳人:tia****nde
文檔編號:6291010
上傳時間:2020-02-21
格式:DOC
頁數(shù):9
大小:141KB
《2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 第二章 推理與證明學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測 新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 第二章 推理與證明學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測 新人教A版選修2-2.doc(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
第一、二章 學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測
時間120分鐘,滿分150分.
一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項(xiàng)中只有一個是符合題目要求的)
1.設(shè)<<0,則在①a2>b2;②a+b>2;③ab
|a|+|b|.這4個不等式中恒成立的有( B )
A.0個 B.1個
C.2個 D.3個
[解析] ∵<<0,∴0>a>b,∴a20時,單調(diào)遞增,故f ′(x)在x<0時,其值為+→-→+,在x>0時為+,故選C.
6.如果1N能拉長彈簧1cm,為了將彈簧拉長6cm,所耗費(fèi)的功為( A )
A.0.18J B.0.26J
C.0.12J D.0.28J
[解析] 設(shè)F(x)=kx,當(dāng)F(x)=1時,x=0.01m,則k=100,∴W=∫100xdx=50x2|=0.18.
7.定義一種運(yùn)算“*”;對于自然數(shù)n滿足以下運(yùn)算性質(zhì):( A )
(i)1]B.n+1
C.n-1 D.n2
[解析] 令an=n*1,則由(ii)得,an+1=an+1,由(i)得,a1=1,
∴{an}是首項(xiàng)a1=1,公差為1的等差數(shù)列,∴an=n,即n*1=n,故選A.
8.已知f(n)=+++…+,則( D )
A.f(n)中共有n項(xiàng),當(dāng)n=2時,f(2)=+
B.f(n)中共有n+1項(xiàng),當(dāng)n=2時,f(2)=++
C.f(n)中共有n2-n項(xiàng),當(dāng)n=2時,f(2)=+
D.f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時,f(2)=++
[解析] 項(xiàng)數(shù)為n2-(n-1)=n2-n+1,故應(yīng)選D.
9.已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f ′(x)的零點(diǎn)所在的區(qū)間是( B )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
[解析] 由題可知g(x)=lnx-,∵g(1)=-1<0,g(2)=ln2-=ln2-ln>0,∴選B.
10.已知c>1,a=-,b=-,則正確的結(jié)論是( B )
A.a(chǎn)>b B.a(chǎn)<b
C.a(chǎn)=b D.a(chǎn)、b大小不定
[解析] a=-=,
b=-=,
因?yàn)?>0,>>0,
所以+>+>0,所以a1時,1loga3,由于y0>1,loga3<0,∴對?a∈(0,1),此式都成立,從而00,f(x)單調(diào)遞增,當(dāng)x∈(-2,0)時,f ′(x)<0,f(x)單調(diào)遞減,∴極大值為f(-2)=a+4,極小值為f(0)=a,又f(-3)=a,f(3)=54+a,由條件知a=3,∴最大值為f(3)=54+3=57.
15.函數(shù)f(x)=ax3-3x在區(qū)間(-1,1)上為單調(diào)減函數(shù),則a的取值范圍是a≤1.
[解析] f ′(x)=3ax2-3,∵f(x)在(-1,1)上為單調(diào)減函數(shù),∴f ′(x)≤0在(-1,1)上恒成立,
即3ax2-3≤0在(-1,1)上恒成立,
∴a≤,∵x∈(-1,1),∴a≤1.
16.(2017洛陽高二檢測)觀察下列等式:=1-,+=1-,++=1-,…,由以上等式推測到一個一般的結(jié)論:對于n∈N*,++…+=1-.
[解析] 由已知中的等式:=1-
+=1-,
++=1-,…,
所以對于n∈N*,++…+=1-.
三、解答題(本大題共6個大題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.(本題滿分10分)已知:a、b、c∈R,且a+b+c=1.
求證:a2+b2+c2≥.
[證明] 由a2+b2≥2ab,及b2+c2≥2bc,c2+a2≥2ca.
三式相加得a2+b2+c2≥ab+bc+ca.
∴3(a2+b2+c2)≥(a2+b2+c2)+2(ab+bc+ca)=(a+b+c)2.
由a+b+c=1,得3(a2+b2+c2)≥1,
即a2+b2+c2≥.
18.(本題滿分12分)已知函數(shù)f(x)=x3+ax2-3bx+c(b>0),且g(x)=f(x)-2是奇函數(shù).
(1)求a、c的值;
(2)若函數(shù)f(x)有三個零點(diǎn),求b的取值范圍.
[解析] (1)∵g(x)=f(x)-2是奇函數(shù),
∴g(-x)=-g(x)對x∈R成立,
∴f(-x)-2=-f(x)+2對x∈R成立,
∴ax2+c-2=0對x∈R成立,
∴a=0且c=2.
(2)由(1)知f(x)=x3-3bx+2(b>0),
∴f ′(x)=3x2-3b=3(x-)(x+),
令f ′(x)=0得x=,
x
(-∞,-)
-
(-,)
(,+∞)
f ′(x)
+
0
-
0
+
f(x)
增
極大值
減
極小值
增
依題意有∴b>1,
故正數(shù)b的取值范圍是(1,+∞).
19.(本題滿分12分)已知函數(shù)f(x)=x3-2ax2+bx,其中a、b∈R,且曲線y=f(x)在點(diǎn)(0,f(0))處的切線斜率為3.
(1)求b的值;
(2)若函數(shù)f(x)在x=1處取得極大值,求a的值.
[解析] (1)f ′(x)=a2x2-4ax+b,
由題意f ′(0)=b=3.
(2)∵函數(shù)f(x)在x=1處取得極大值,
∴f ′(1)=a2-4a+3=0,解得a=1或a=3.
①當(dāng)a=1時,f ′(x)=x2-4x+3=(x-1)(x-3),
x、f ′(x)、f(x)的變化情況如下表:
x
(-∞,1)
1
(1,3)
3
(3,+∞)
f ′(x)
+
0
-
0
+
f(x)
極大值
極小值
由上表知,函數(shù)f(x)在x=1處取得極大值,符合題意.
②當(dāng)a=3時,f ′(x)=9x2-12x+3=3(3x-1)(x-1),
x、f ′(x)、f(x)的變化情況如下表:
x
(-∞,)
(,1)
1
(1,+∞)
f ′(x)
+
0
-
0
+
f(x)
極大值
極小值
由上表知,函數(shù)f(x)在x=1處取得極小值,不符合題意.
綜上所述,若函數(shù)f(x)在x=1處取得極大值,a的值為1.
20.(本題滿分12分)若x>0,y>0,用分析法證明:(x2+y2)>(x3+y3).
[證明] 要證(x2+y2)>(x3+y3),
只需證(x2+y2)3>(x3+y3)2,
即證x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,
即證3x4y2+3y4x2>2x3y3.
又因?yàn)閤>0,y>0,所以x2y2>0,
故只需證3x2+3y2>2xy.
而3x2+3y2>x2+y2≥2xy成立,
所以(x2+y2)>(x3+y3)成立.
21.(本題滿分12分)已知函數(shù)f(x)=ax+(a>1).
(1)證明:函數(shù)f(x)在(-1,+∞)上為增函數(shù);
(2)用反證法證明方程f(x)=0沒有負(fù)數(shù)根.
[解析] (1)證法1:任取x1、x2∈(-1,+∞),不妨設(shè)x10,ax2-x1>1且ax1>0,
∴ax2-ax1=ax1(ax2-x1-1)>0,
又∵x1+1>0,x2+1>0,
∴-
=
=>0,
于是f(x2)-f(x1)=ax2-ax1+->0,
故函數(shù)f(x)在(-1,+∞)上為增函數(shù).
證法2:f ′(x)=axlna+=axlna+
∵a>1,∴l(xiāng)na>0,∴axlna+>0,
f ′(x)>0在(-1,+∞)上恒成立,
即f(x)在(-1,+∞)上為增函數(shù).
(2)解法1:設(shè)存在x0<0(x0≠-1)滿足f(x0)=0,
則ax0=-,且00,ax0>0,∴f(x0)>0.
綜上,x<0(x≠-1)時,f(x)<-1或f(x)>0,即方程f(x)=0無負(fù)數(shù)根.
22.(本題滿分14分)設(shè)a>1,函數(shù)f(x)=(1+x2)ex-a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:f(x)在(-∞,+∞)上僅有一個零點(diǎn);
(3)若曲線y=f(x)在點(diǎn)P處的切線與x軸平行,且在點(diǎn)M(m,n)處的切線與直線OP平行(O是坐標(biāo)原點(diǎn)),證明:m≤-1.
[解析] (1)依題f′(x)=(1+x2)′ex+(1+x2)(ex)′=(1+x)2ex≥0,
∴f(x)在(-∞,+∞)上是單調(diào)增函數(shù).
(2)證明:∵a>1,
∴f(0)=1-a<0且f(a)=(1+a2)ea-a>1+a2-a>0,
∴f(x)在(0,a)上有零點(diǎn).
又由(1)知f(x)在(-∞,+∞)上是單調(diào)增函數(shù),
∴f(x)在(-∞,+∞)上僅有一個零點(diǎn).
(3)證明:令f′(x)=(1+x)2ex=0,得x=-1,
而f(-1)=[1+(-1)2]e-1-a=-a,
故P.
直線OP的斜率kOP==a-,
而f(x)在點(diǎn)M(m,n)處的切線斜率為
f′(m)=(1+m)2em.
由平行關(guān)系知-+a=(1+m)2em.
要證m≤-1,
即證(m+1)3≤a-=(1+m)2em,
即m+1≤em.
令g(m)=em-m-1,則g′(m)=em-1.
當(dāng)m<0時,g′(m)<0,g(m)在(-∞,0)上單調(diào)遞減;
當(dāng)m>0時,g′(m)>0,g(m)在(0,+∞)上單調(diào)遞增.
故g(m)在(-∞,+∞)上的最小值為g(0)=0,
即g(m)=em-m≥0在(-∞,+∞)上恒成立,
于是m+1≤em,即m≤-1得證.
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2018-2019學(xué)年高中數(shù)學(xué)
第一章
導(dǎo)數(shù)及其應(yīng)用
第二章
推理與證明學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測
新人教A版選修2-2
2018
2019
學(xué)年
高中數(shù)學(xué)
導(dǎo)數(shù)
及其
應(yīng)用
第二
推理
證明
學(xué)業(yè)
質(zhì)量標(biāo)準(zhǔn)
檢測
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://weibangfood.com.cn/p-6291010.html