智能化自尋跡程控車模外形及其控制系統(tǒng)設(shè)計【含4張CAD圖紙+文檔全套】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
南 華 大 學(xué)
畢業(yè)設(shè)計(論文)任務(wù)書
學(xué) 院: 機 械 工 程 學(xué) 院
題 目: 智能化自尋跡程控車模外形及其控制系統(tǒng)設(shè)計
起止時間: 2006 年 12 月 25 日至 2007 年 6月 5 日
學(xué) 生 姓 名: 胡 金 興
專 業(yè) 班 級: 機械設(shè)計制造及其自動化032班
指 導(dǎo) 老 師:
教研室主任:
院 長:
2006 年 12月 25 日
設(shè)計(論文)內(nèi)容及要求:
一、 設(shè)計(論文)內(nèi)容
題目:智能化自尋跡程控車模外形及其控制系統(tǒng)設(shè)計
研究內(nèi)容: 1)車體設(shè)計
2)控制系統(tǒng)設(shè)計
1. 紅外遙控裝置能控制單片機,使之發(fā)出進、退、左轉(zhuǎn)、右轉(zhuǎn)控制(并給出動作指示)。
2. 使用紅外對管設(shè)計尋跡電路(即自動區(qū)別黑白道標(biāo)記)。
3.根據(jù)尋跡信號設(shè)計單片機對電機的控制電路。
4.單片機采用匯編及C51進行編制,程序的下載為ISP方式。
二、 要求:
本課題主要培養(yǎng)學(xué)生的程序設(shè)計和繪圖等實際能力,通過畢業(yè)設(shè)計,學(xué)生應(yīng)初步具備工程設(shè)計的實際能力。
1、程控小車的總體設(shè)計方案,設(shè)計小車外形輪廓,利用計算機繪制A0圖紙一張。
2、編寫控制小車自動尋跡的原程序一份,
3、整理,編寫設(shè)計說明書,內(nèi)容包括程控小車的外形設(shè)計和程序設(shè)計,不少于20000字,英文摘要500字左右,計算機打印。
4、翻譯有關(guān)英文資料1-2篇,不少于3000字,計算機打印.
指導(dǎo)教師: 年 月 日
外文翻譯
英文原文:
Flexible Manufacturing System
A logical step from the concepts of group layout and of NC machine tools and robotics are computer-controlled interlinked outstation machining complexes, or 11exibe manufacturing systems(FMS)as they have bedclothes call.do.Such systems can be looked upon as highly automated cells manufacturing families of components.
The concept of FMS is not a new one; the first proposals were made in the mid 1960s. In recent years we have seen a growth in the number of systems, particularly in Japan, such that it is estimated that in excess of a hundred systems have been installed worldwide. A flexible manufacturing system contains a number of features as follows:
1. Interlinked NC workstations operating on a limited range or family of work pieces. In early propos-ales the machines were of modular construction, but in recent systems general-purpose NC machines, in particular machining centers, are most commonly used.
2. Automatic transportation, loading at unloading of work pieces and tools, using automatic guided vehicles (AGVs), robots, etc.
3. Work pieces mounted on pallets ft* transportation, pattly to overcome the problems of new setups at each workstation.
4. Centralized NC or DNC, together with overall computer control of the system.
5. Operation for significant periods of time with little or no manual intervention.
With FMS the tern flexibility means the ability to aptness a variety of components without having to adjust machine setups. Or change tooling. High flexibility implies that a large family of different components can be produced by the particular system. Figure 5. 17 show that several variants of the basic FMS con-kept exist. These are;
l.Flexible manufacturing cells(FMs): These are basically machining centum but with the addition of a pallet pool or magazine(Fig.5. t8 ).The aim is to machine the work piece with one stupefies type of machine can be operated unmanned for long periods of time, with the palletized work pieces transformed au-somatically to and from the machine. Flexible manufacturing cells of this type must be served by machines or operators engaged in blank preparation and polarization of work pieces. These cells are highly flexible in operation, having the ability to deal with a wide range of pats (40 to 800), in small batches of from 15 to 500.
2. Flexible transfer lines (fall): These, systems consist of a number of NC or head-changeable ma chine tools connected by automatic material transfer systems. The system can machine different components but without flexible routing of the workpieces.The family of components is relatively small (< 20) and the components must be quite similar to one another, as the overall flexibility of tote system is too low for a larger variety to be accommodated@. In consequence, the work cycles at each station nulls are quite well balanced. Production quantities must be quite large for economic use of these system (1 500 to 15000 per annum for each component).
3. Flexible manufacturing systems (FMS), in these systems NC workstations are linked by automatic work piece transfer and handing. With flexible routing and automatic work piece loading and unloading. A-chining times at each station can differ considerably. The number of different components that can be pro-cussed by these systems is 'ohm 10 'o 150 in general and moderate quantities can be produced (15 to 500 components per annum for type)
1.Work Handling for FMS
Work pieces are usually mounted on standard pallets for processing in FMS and these pallets locate automatically at each workstation in the system. A variety of work-handling devices are used to transport parts, pallets, and tools around the system. Some of these ate as follows:
1. Tow carts: These are the most cannon devices used; they consist of a simple platform on castors and are towed around the system by engagement with under floor, continuously moving chains. Cats stop at workstations by means of a mechanism total releases the tow pin at the appropriate time. Branches and loops are canalled in a similar manner to railway systems. 11te main advantage of tow carts is their simplicity and low cost, since no on-board power is required for their movement or control. Facilities must be available at each workstation to load and unload pallets from the carts. Also, the circulation of carts must be unidirectional.
2. Automatic guided vehicles (AGVs). These devices are usually designed to follow wins buried in the floor of the plant or lines painted on tote floor. On-board power and control is required for bolt move mint and steering ate for tote handling of pallets. Automatic guided vehicles ate more expensive than tow cats and are both larger and heavier. Tale main advantage of AGVs is their greater flexibility of opera-ton. These devices may move in either direction, but for ease of control, circulation is usually restricted to one direction only in practice.
3. Rail cats: These carts move on rails and are generally restricted to backward and forward motion along straight tracks. Power and control instructions ate ttunsferred by overhead conductors or extra rails. Rail carts often accommodate two pallets to allow for pallet exchange at the system workstations.
4. Roller conveyors: Most of tote early FMS developments utilized powered-roller conveyors for moving work pieces from statuette to station. The use of these convents in modern systems is less common. Roller conveyors are expensive to install and occupy valuable floor space. In addition, these conveyors are relatively inflexible in operation and difficult to alter if the overall system is expanded.
5. Industrial robots: Robots are used in FMS but not extensively unless the cell consists of only a few machines. They may be used as second at) handling devices, particularly for turned work pieces, which may be transported around the system in hatches on pallets by other handling devices and then transferred to the machine tool by robots at each workstation. Gripper designs suitable for handling a wide variety of components are important in this case.
2. Layouts for FMS
A variety of different layouts for the machine tools in FMS have been adopted, The choice depends on the scope of the system and the type of handling devices used for transporting work pieces from workstation to workstation. The use of rail carts mean that a straight track must be used, with machines located at the side of tote track. Early systems using roller conveyors usually employed a simple loop configura-tio11, with branches to the workstations.
The increased use of tow carts and AGVs has resulted in more complex multicolor or tree-type layouts being used. The latter type is most suitable for AGVs and is particularly useful if expansion of the system with additional workstations is anticipated. Figure 5.19 shows a typical multicolor layout using tow carts, and Fig.5.20 shows a typical layout where AGVs are used for work handling.
3. Factory of the Future
On the basis of the advances made to date in all aspects of manufacturing technology and computer controls, we may envisage the factory of the future as a fully automated facility in which human beings would not be directly involved with production on the shop i1oor (hence the term unmanned factories).All manufacturing, material handling, assembly, and inspection would be done by automated and computer-controlled machinery and equipment.
Similarly, activities such as processing incoming orders, production planning and scheduling, cost accounting, and various decision-making processes (usually performed by management) would also be done automatically by computers. The role of human beings would be confined to activities such as supervising, maintaining (especially preventive maintenance), and upgrading machines and equipment; ship-ping and receiving supplies and finished products ; providing security for the plant facilities ; and programming, upgrading, and monitoring computer programs, and monitoring, maintaining, and upgrading hard-ware.
Industries such as some food, petroleum, and chemical already operate automatically with little human intervention. These are continuous processes and, unlike piece part manufacturing, are easier to automate fully. Even so, the direct involvement of fewer people in manufacturing products is already apparent: Surveys show that; only 10-15 percent of the workforce is directly involved in production. Most of the workforce is involved in gathering and processing information.
Virtually unmanned manufacturing cells already make products such as engine blocks, axles, and housings for clutches and air compressors .For large-scale, flexible manufacturing systems, however, highly trained and skilled personnel will always be needed to plan, maintain, and oversee operation.
The reliability of machines, control systems, and power supply is crucial to full factory automation. A local or general breakdown in machinery, computers, power, or communications networks will, without rapid human intervention cripple production. The computer-integrated factory of the future should be capable of automatically rerouting materials and production flows to other computers in case of such emergencies.
譯文:
柔性制造系統(tǒng)
以成組布局的方式,將由計算機控制的多臺數(shù)控機床及機器人結(jié)合成多工位成套加工設(shè)備,即稱為柔性制造系統(tǒng)(FMS),這種系統(tǒng)被視為對各類零件族進行加工的高度自動化制造單元。
FMS并非是新的頓念,首先是在二十世紀(jì)60年代中期提出的。近年來FMS的數(shù)量不斷增加,尤其是日本。據(jù)估計,世界上建立起來的FMS已經(jīng)超過了一百套。柔性制造系統(tǒng)具有以下一些特征:
l。將對范圍有效的零件或某族零件進行加工的多臺效控工作站互相聯(lián)結(jié)。早期規(guī)劃時FMS中的機床都采用單元結(jié)構(gòu)、而近年來生產(chǎn)的FMS基本上采用通用數(shù)控機床,尤其是加工中心。
2.通過自動運輸小車(AGVs)機械手等設(shè)備時工件及刀具進行自動運送和裝卸。
3.為便于傳輸,將工件裝在托盤上,部分解決了工件裝到每個工作站上去需進行重新調(diào)整的問題。
4.?dāng)?shù)控系統(tǒng)或直接數(shù)控系統(tǒng)與系統(tǒng)的計算機總體控制一起實行集中管理。
5.主要的加工過程無須人工干預(yù)或較少人工干預(yù)。
柔性制造系統(tǒng)這一術(shù)語中的柔性意味著該系統(tǒng)在不必調(diào)整機床設(shè)備或更換工藝裝備的情況下就能加工各類零件。柔性大是指萊某一特定的系統(tǒng)能加工某一大零件族的不同零件。圖5。I 7示表示了現(xiàn)有的基本的FMS概念引出的一些派生系統(tǒng),即:
1.柔性制造單元(FMS):它基本上是帶有托盤庫或托盤站的加工中心(圖5,1 8)。其目的是在一次安裝下便可加工出工件。這種柔性制造單元可長時間無人看管。裝在托盤中的工件可自動送達以及運離該加工機床。這種類型的柔性制造單元必須由機械裝置或操作人員進行毛坯準(zhǔn)備前將工件裝在托盤上。柔性制造單元的加工柔性高,可小批量(15到5 00)地加工多種零件(40 ~8 00種)。
2.柔性自動線〈LTLs)。這些系統(tǒng)是由多臺數(shù)控機床或可更換主軸箱的機床所組成,機床之間通過物料自動輸送系統(tǒng)相聯(lián)接。此系統(tǒng)可加工不同的零件,但工件的加工路線不能變動??杉庸さ牧慵宸N類比較少(<20)而且它們之間必須十分相似,這是因為這類系統(tǒng)的柔性太小,所加工的工件不可變化太太。所以每個工作站上的加工時間必須相等。要使這些系統(tǒng)加工經(jīng)濟則產(chǎn)量必頌大(每種零件的年產(chǎn)量應(yīng)為1500到15000件)。
3.柔性制造系統(tǒng)(FMS)。此類系統(tǒng)的數(shù)控工作站由工件的自動榜送和搬運系統(tǒng)相聯(lián)接,能夠改變加工路線,并可自動裝卸工件。每個工作站的加工時間可能相差較大。柔性制造系統(tǒng)可加工的零件種類一放為10~ 150種,適于中等批量的生產(chǎn)〈每一類零件的年產(chǎn)量為15 到 500件〉。圖5。17 各種FMS的概念柔性自動化。
柔性自動線:機床內(nèi)部聯(lián)系;多用途加工;周期地輸送工件;控制物料流動;加工設(shè)備的部分運用性,其調(diào)整時間較短。
柔性制造系統(tǒng):機床外部聯(lián)系,單用途和/或多用途加工;非周期輸送工作;物料按各種順序自動流動;對手少量的試件無需進行手工調(diào)整。
柔性制造單元:沒有內(nèi)部聯(lián)系的獨立設(shè)置的機床;單級加工;機床裝載工作,具有一個緩沖工位的機床;帶有工件庫的機床; 自動換刀。圖5,l 8 典型的用于無人操作的加工中心,它帶有托盤、刀庫及CNC控制可與主計算機通訊。自動換刀機構(gòu);刀庫;CNC控制單元;自動除屑裝置;托盤庫。
1.柔性制造系統(tǒng)的工件輸送裝置
FMSs中通常將工件安裝在托盤上以便進行加工,托盤在系統(tǒng)的每一工位上自動定位。采用了各種輸送裝置以便在系統(tǒng)中運送工件、托盤及刀具,其中輸送裝置是:
1.牽引車:這是最常用的輸送裝置,它由自位輪上的簡單平臺組成,通過地下連續(xù)移動的傳輸鏈牽引繞系統(tǒng)運動。通過一機械裝置在適當(dāng)?shù)臅r間松開牽引銷使?fàn)恳囋诟鞴の煌O?。運輸線路的分支及其回路的控制叫方式類似于鐵路系統(tǒng)。由于牽引車的運動或控制不需要車上能源,所以拖車的主要優(yōu)點是結(jié)構(gòu)簡單,造價低廉。每-工作站上都必須有從牽引車上裝卸托盤的設(shè)備,同樣,拖車的循環(huán)必須是不定向的。
2.自動引導(dǎo)小車(AGVs)。這種運輸車通常是設(shè)計為沿埋于車間地下的線路或沿涂敷在地面上的線路來運行。其運動、轉(zhuǎn)向以及運送托盤都需消耗運輸車車上的能量和控制。自動導(dǎo)引車比牽引車的造價高、體積大、同時也更重要一些。AGVs的主要優(yōu)點是工作柔性較大,可沿任意方向運動,但是為便于控制;實際上這種運輸車通常只能沿一個方向運動。
3.有軌小車:有軌小車在導(dǎo)軌上運動,一般僅能沿直線導(dǎo)軌作前后運動。通過上部的導(dǎo)線或附加的導(dǎo)軌來傳送能量及控制指令。有軌小車通??扇菁{兩個托盤,從而可在系統(tǒng)的工作站上交換托盤。
4.滾珠式輸送器:大部分早期的FMS使用機動的滾柱式輸送器來完成工件在系統(tǒng)工作站之間的輸送、現(xiàn)代的FMS已很少使用了。滾柱式輸送器安裝費用較高,占用廠房空間較大。另外,其工作柔性較差,如果整個系統(tǒng)要擴大,則很難改動。
5.工業(yè)機器人:工業(yè)機器人可用于FMS,但除了僅由少數(shù)幾臺機床構(gòu)成的制造單元采用它外,并沒有廣泛采用。機器人也可以作為輔助傳輸裝置,特別是對于車削件,工件可分批裝在托盤上,并由其它輸送裝置控制其繞系統(tǒng)輸送,到每一工作站后再由機器人將其傳送到機床上。重要的是設(shè)計適合于在這種情況下搬運各種了件的抓手裝置。
2柔性封造系統(tǒng)的總體布局
FMSs已采用了各種不同的機床布局方式。選用哪種布局方式取決于該系統(tǒng)的應(yīng)用范圍及工件持送設(shè)備的類型。使用有執(zhí)小車則意味著必須使用直線導(dǎo)軌,而機床位于在該導(dǎo)軌側(cè)面。早期的柔性制造系統(tǒng)使用滾柱式輸送器,通常采用簡單的環(huán)形布置格局,其中有許多支路通向各工作站牽引車和自動導(dǎo)引小車用得越來越多,使得柔性制造系統(tǒng)采用了更為復(fù)雜的多環(huán)路布局方式或樹形布局方式。樹形布局方式最適于使用自動引導(dǎo)小車,可以預(yù)料,對于以增加工作站來擴展系統(tǒng)尤為有用。圖F。l 9表示了一種典型的使用牽引車的多環(huán)路布局形式,圖5.20表示了一種典型的使用自動導(dǎo)引車輸送工件的布局方式。
圖5.19 系統(tǒng)有8臺臥式加工中心和4 臺主軸箱更換裝置的典型牽引車布形式裝卸工件;牽引車運輸軌道;直線式往復(fù)來回料車;計算機房;回料車更換主軸箱;計箕機房;刀具倉。
圖5.20 典型的自動導(dǎo)引小車的布局方式。系統(tǒng)有5臺臥式加工中心、坐標(biāo)測量機、自動托盤站和檢索系統(tǒng)以及轉(zhuǎn)盤式倉庫坐標(biāo)測量機。加工中心;自動托盤站和檢索系統(tǒng):控制室;轉(zhuǎn)盤式倉庫;AGV軌道。
3.柔性明造系纜中的刀具
柔性制造系統(tǒng)若要使用大量的刀具、就勢必會限制系統(tǒng)的柔性。系統(tǒng)必紹有足夠的刀具可用于加工各種類型的零件。如前所述,系統(tǒng)配置一些相同類型的機床則可提而其柔性,但如果要使其中的任何一臺機床都可加工任意工件的話,這就意味著所有的機床都必須能使用各種所需的刀具。這就要求每臺機床都帶有容量很大的刀庫,如可容納250把甚至更多刀具的刀庫。如果沒有這么大的刀庫容量,,就必須采用其他會減小系統(tǒng)總體柔性的辦法,這些措施有:
1.讓一些機床只加工某些范圍的零件;
2.限制加工零件子族的次數(shù),在允許的時間內(nèi)在系統(tǒng)中換刀。長遠(yuǎn)的解決辦法也許需要在系統(tǒng)中采取一種可行的自動換刀方法,但這將引起很高的額外投資和研制費用??刹扇〉姆椒ㄓ校?
l.可互換的轉(zhuǎn)盤式刀庫;
2.在每一工位上自動將刀具從固定轉(zhuǎn)盤式刀庫運至移動圓盤傳送帶上;
3.單獨自動搬運刀具和工件,并將它們一起送至每一工作站。
4未來的工廠
根據(jù)目前機械制造技術(shù)和計算機控制技術(shù)各領(lǐng)域所取得的成就,我們可以設(shè)想未來的工廠將是無人直接參與加工車間生產(chǎn)的全自動化工廠(即無人工廠)。所有的機械加工、材料輸送、產(chǎn)品裝配和檢測都將由自動化的計算機控制的機械設(shè)備來完成。同樣,諸如處理新的訂單,制定生產(chǎn)計劃和調(diào)度,估算成本及作出各種決策(通常由管理部門完成)也將由計算機自動完成。人的作用將僅限于管理、保養(yǎng)維修(尤其是預(yù)防性保養(yǎng))及機床設(shè)備的改進、接收和裝運外來件和成品、為廠內(nèi)設(shè)備供安全保障;編制、改進并監(jiān)控計箕機程序以及監(jiān)控、推護及改進硬件。
某些食品,油料和化工行業(yè)已經(jīng)實現(xiàn)了幾乎無需人工干預(yù)的自動化生產(chǎn)。這些都是連續(xù)生產(chǎn)過程,而不是離散制造,更易于實現(xiàn)完全自動化。即使如此,產(chǎn)品的制造過程中很明顯只有較少人工直接參與。調(diào)查表明只有! 10%~15%的勞動力直接參與生產(chǎn)過程。而大部分勞動力是收集和處理各種信息。
實際上,無人制造單元已用于生產(chǎn)諸如發(fā)動機汽缸體,軸以及離合器和空氣壓縮機的外殼等產(chǎn)品。然而,大規(guī)模的柔性制造系統(tǒng)將一直需要受過良好訓(xùn)練、技術(shù)熱練的人來計劃,維護和管理生產(chǎn)。
機床、控制系統(tǒng)和能源供給可靠性對全自動化工廠而言是至關(guān)重要的。如果沒有及時人工干預(yù),機械裝置、計算機、能源和通訊網(wǎng)絡(luò)出現(xiàn)的局部或整體故障將破壞整個生產(chǎn)。未來的計算機集成工廠應(yīng)能在出現(xiàn)這種緊急情況的時候自動將物料和生產(chǎn)流轉(zhuǎn)送至其他機床,并在另處的計算機控制下進行生產(chǎn)。
5對勞動力的沖擊
這樣,通常參與傳統(tǒng)制造業(yè)的低技能的直接勞動力將轉(zhuǎn)化為間接勞動力,他們需要經(jīng)過計算機編程、信息處理、CAD/CAM及其它高技術(shù)工作的專門培訓(xùn)和再培訓(xùn),這是計算機集成制造的基本要素。人們正在研制對用戶更為友好的計算機軟件,從而使勞動力的再培訓(xùn)容易得多。
有關(guān)無人工廠的影響的觀點分歧很多。所以,很難預(yù)測未來制造技術(shù)的必然趨勢。盡管經(jīng)濟性的考慮及利弊權(quán)衡是關(guān)鍵的因素,但沒有建立計算機集成制造系統(tǒng)的工廠將處危難之中。人們普遍認(rèn)識到,在競爭激烈的市場中,快速的適應(yīng)能力對制造廠的生存來說是至關(guān)重要的。
南華大學(xué)本科生畢業(yè)設(shè)計(論文)開題報告
設(shè)計(論文)題目
智能化自尋跡程控車模外形及其控制系統(tǒng)設(shè)計
設(shè)計(論文)題目來源
自選課題
設(shè)計(論文)題目類型
工程設(shè)計類
起止時間
2006.12.25~2007.6.5
一、 設(shè)計(論文)依據(jù)及研究意義:
本設(shè)計利用紅外反射式傳感器實現(xiàn)小車自動尋跡導(dǎo)航的設(shè)計與實現(xiàn)。自動尋跡是基于自動導(dǎo)引小車(AGV—auto-guided vehicle)機器人系統(tǒng),用以實現(xiàn)小車自動識別路線,判斷并自動規(guī)避障礙,以及選擇正確的路線。實驗中采用與地面顏色有較大差別的線條作引導(dǎo),使用反射式紅外傳感器感知導(dǎo)引線和判斷障礙物。系統(tǒng)控制核心采用AT89系列單片機,系統(tǒng)驅(qū)動采用控制方式為直流電機。該技術(shù)可以應(yīng)用于無人駕駛機動車,無人工廠、倉庫、服務(wù)機器人等領(lǐng)域
.
二、設(shè)計(論文)主要研究的內(nèi)容、預(yù)期目標(biāo):(技術(shù)方案、路線)
1.車體設(shè)計
底盤設(shè)計
電機選擇
驅(qū)動方式
2.控制系統(tǒng)設(shè)計
單片機系統(tǒng)設(shè)計
系統(tǒng)程序設(shè)計
預(yù)期目標(biāo):
根據(jù)設(shè)計要求選定的參數(shù),依照車模的結(jié)構(gòu)和尺寸,進行計算及校核,總圖及零件圖的繪制。
技術(shù)路線:
1.根據(jù)任務(wù)書上的要求,搜集資料,進行程控小車的外形設(shè)計和控制系統(tǒng)設(shè)計
2.用pro/e繪制全部的三維圖及其裝配圖
三、設(shè)計(論文)的研究重點及難點:
重點:1.程控車車模外形造型
2.控制系統(tǒng)電路設(shè)計和程序設(shè)計
難點:1.控制系統(tǒng)電路及程序設(shè)計
四、設(shè)計(論文)研究方法及步驟(進度安排):
1.2006年12月15日—2007年1月25日通過老師對智能自尋跡程控車造型內(nèi)和控制系統(tǒng)設(shè)計的講解,對這一設(shè)計有一個初步的認(rèn)識,并通過網(wǎng)絡(luò),圖書館查
找相關(guān)資料,加強理論知識以及控制系統(tǒng)的設(shè)計知識。
2.2007年3月21日—2007年4月10日進行程控小車控制系統(tǒng)的初步設(shè)計
3.2007年4月11日—2007年4月30日車模外形設(shè)計和造型
4.2007年5 月1 日—2007年5月31日專題研究
5.2007年6月1 日—2007年6月5日編寫說明書,整理資料,準(zhǔn)備答辯。
五、 進行設(shè)計(論文)所需條件:
1.裝有pro/e軟件的計算機一臺。
2.與設(shè)計所需理論技術(shù)有關(guān)的書籍和資料
3.制作程控小車所需的材料
四、 指導(dǎo)教師意見:
簽名: 年 月 日
收藏