《開關電源設計》word版.doc
《《開關電源設計》word版.doc》由會員分享,可在線閱讀,更多相關《《開關電源設計》word版.doc(104頁珍藏版)》請在裝配圖網上搜索。
開關電源設計技巧 一:開關電源的基本工作原理 1-1.幾種基本類型的開關電源 顧名思義,開關電源就是利用電子開關器件(如晶體管、場效應管、可控硅閘流管等),通過控制電路,使電子開關器件不停地“接通”和“關斷”,讓電子開關器件對輸入電壓進行脈沖調制,從而實現(xiàn)DC/AC、DC/DC電壓變換,以及輸出電壓可調和自動穩(wěn)壓。 開關電源一般有三種工作模式:頻率、脈沖寬度固定模式,頻率固定、脈沖寬度可變模式,頻率、脈沖寬度可變模式。前一種工作模式多用于DC/AC逆變電源,或DC/DC電壓變換;后兩種工作模式多用于開關穩(wěn)壓電源。另外,開關電源輸出電壓也有三種工作方式:直接輸出電壓方式、平均值輸出電壓方式、幅值輸出電壓方式。同樣,前一種工作方式多用于DC/AC逆變電源,或DC/DC電壓變換;后兩種工作方式多用于開關穩(wěn)壓電源。 根據(jù)開關器件在電路中連接的方式,目前比較廣泛使用的開關電源,大體上可分為:串聯(lián)式開關電源、并聯(lián)式開關電源、變壓器式開關電源等三大類。其中,變壓器式開關電源(后面簡稱變壓器開關電源)還可以進一步分成:推挽式、半橋式、全橋式等多種;根據(jù)變壓器的激勵和輸出電壓的相位,又可以分成:正激式、反激式、單激式和雙激式等多種;如果從用途上來分,還可以分成更多種類。 下面我們先對串聯(lián)式、并聯(lián)式、變壓器式等三種最基本的開關電源工作原理進行簡單介紹,其它種類的開關電源也將逐步進行詳細分析。 1-2.串聯(lián)式開關電源 1-2-1.串聯(lián)式開關電源的工作原理 圖1-1-a是串聯(lián)式開關電源的最簡單工作原理圖,圖1-1-a中Ui是開關電源的工作電壓,即:直流輸入電壓;K是控制開關,R是負載。當控制開關K接通的時候,開關電源就向負載R輸出一個脈沖寬度為Ton,幅度為Ui的脈沖電壓Up;當控制開關K關斷的時候,又相當于開關電源向負載R輸出一個脈沖寬度為Toff,幅度為0的脈沖電壓。這樣,控制開關K不停地“接通”和“關斷”,在負載兩端就可以得到一個脈沖調制的輸出電壓uo 。 圖1-1-b是串聯(lián)式開關電源輸出電壓的波形,由圖中看出,控制開關K輸出電壓uo是一個脈沖調制方波,脈沖幅度Up等于輸入電壓Ui,脈沖寬度等于控制開關K的接通時間Ton,由此可求得串聯(lián)式開關電源輸出電壓uo的平均值Ua為: Ua = Ui = DUi (1-1) 式中Ton為控制開關K接通的時間,T為控制開關K的工作周期。改變控制開關K接通時間Ton與關斷時間Toff的比例,就可以改變輸出電壓uo的平均值Ua 。一般人們都把 稱為占空比(Duty),用D來表示,即: 或 串聯(lián)式開關電源輸出電壓uo的幅值Up等于輸入電壓Ui,其輸出電壓uo的平均值Ua總是小于輸入電壓Ui,因此,串聯(lián)式開關電源一般都是以平均值Ua為變量輸出電壓。所以,串聯(lián)式開關電源屬于降壓型開關電源。 串聯(lián)式開關電源也有人稱它為斬波器,由于它工作原理簡單,工作效率很高,因此其在輸出功率控制方面應用很廣。例如,電動摩托車速度控制器以及燈光亮度控制器等,都是屬于串聯(lián)式開關電源的應用。如果串聯(lián)式開關電源只單純用于功率輸出控制,電壓輸出可以不用接整流濾波電路,而直接給負載提供功率輸出;但如果用于穩(wěn)壓輸出,則必須要經過整流濾波。 二:串聯(lián)式開關電源輸出電壓濾波電路 大多數(shù)開關電源輸出都是直流電壓,因此,一般開關電源的輸出電路都帶有整流濾波電路。圖1-2是帶有整流濾波功能的串聯(lián)式開關電源工作原理圖。 圖1-2是在圖1-1-a電路的基礎上,增加了一個整流二極管和一個LC濾波電路。其中L是儲能濾波電感,它的作用是在控制開關K接通期間Ton限制大電流通過,防止輸入電壓Ui直接加到負載R上,對負載R進行電壓沖擊,同時對流過電感的電流iL轉化成磁能進行能量存儲,然后在控制開關K關斷期間Toff把磁能轉化成電流iL繼續(xù)向負載R提供能量輸出;C是儲能濾波電容,它的作用是在控制開關K接通期間Ton把流過儲能電感L的部分電流轉化成電荷進行存儲,然后在控制開關K關斷期間Toff把電荷轉化成電流繼續(xù)向負載R提供能量輸出;D是整流二極管,主要功能是續(xù)流作用,故稱它為續(xù)流二極管,其作用是在控制開關關斷期間Toff,給儲能濾波電感L釋放能量提供電流通路。 在控制開關關斷期間Toff,儲能電感L將產生反電動勢,流過儲能電感L的電流iL由反電動勢eL的正極流出,通過負載R,再經過續(xù)流二極管D的正極,然后從續(xù)流二極管D的負極流出,最后回到反電動勢eL的負極。 對于圖1-2,如果不看控制開關K和輸入電壓Ui,它是一個典型的反 型濾波電路,它的作用是把脈動直流電壓通過平滑濾波輸出其平均值。 圖1-3、圖1-4、圖1-5分別是控制開關K的占空比D等于0.5、< 0.5、> 0.5時,圖1-2電路中幾個關鍵點的電壓和電流波形。圖1-3-a)、圖1-4-a)、圖1-5-a)分別為控制開關K輸出電壓uo的波形;圖1-3-b)、圖1-4-b)、圖1-5-b)分別為儲能濾波電容兩端電壓uc的波形;圖1-3-c)、圖1-4-c)、圖1-5-c)分別為流過儲能電感L電流iL的波形。 在Ton期間,控制開關K接通,輸入電壓Ui通過控制開關K輸出電壓uo,然后加到儲能濾波電感L和儲能濾波電容C組成的濾波電路上,在此期間儲能濾波電感L兩端的電壓eL為: 式中:Ui輸入電壓,Uo為直流輸出電壓,即:電容兩端的電壓uc的平均值。 在此順便說明:由于電容兩端的電壓變化量ΔU相對于輸出電壓Uo來說非常小,為了簡單,我們這里把Uo當成常量來處理。在某種情況下,如需要對電容的初次充、放電過程進行分析時,必須需要建立微分方程,并求解。因為輸出電壓Uo的建立需要一定的時間,精確計算得出的結果中一般都含有指數(shù)函數(shù)項,當令時間變量等于無窮大時,即電路進入穩(wěn)態(tài)時,再對相關參量取平均值,其結果就基本與(1-4)相等。 對(1-4)式進行積分得: 式中i(0)為控制開關K轉換瞬間(t = 0時刻),即:控制開關K剛接通瞬間流過電感L的電流,或稱流過電感L的初始電流。 當控制開關K由接通期間Ton突然轉換到關斷期間Toff的瞬間,流過電感L的電流iL達到最大值: 在Toff期間,控制開關K關斷,儲能電感L把磁能轉化成電流iL,通過整流二極管D繼續(xù)向負載R提供能量,在此期間儲能濾波電感L兩端的電壓eL為: 式中–Uo前的負號,表示K關斷期間電感產生電動勢的方向與K接通期間電感產生電動勢的方向正好相反。對(1-7)式進行積分得: 式中i(Ton+)為控制開關K從Ton轉換到Toff的瞬間之前流過電感的電流,i(Ton+)也可以寫為i(Toff-),即:控制開關K關斷或接通瞬間,之前和之后流過電感L的電流相等。實際上(1-8)式中的i(Ton+)就是(1-6)式中的iLm,即: 因此,(1-9)式可以改寫為: 當t = Toff時iL達到最小值。其最小值為: 上面計算都是假設輸出電壓Uo基本不變的情況得到的結果,在實際應用電路中也正好是這樣,輸出電壓Uo的電壓紋波非常小,只有輸出電壓的百分之幾,工程計算中完全可以忽略不計。 從(1-4)式到(1-11)和圖1-3、圖1-4、圖1-5中可以看出: 當開關電源工作于臨界連續(xù)電流或連續(xù)電流狀態(tài)時,在K接通和關斷的整個周期內,儲能電感L都有電流流出,但在K接通期間與K關斷期間,流過儲能電感L的電流的上升率(絕對值)一般是不一樣的。在K接通期間,流過儲能電感L的電流上升率為: ;在K關斷期間,流過儲能電感L的電流上升率為: 。因此: (1)當Ui = 2Uo時,即濾波輸出電壓Uo等于電源輸入電壓Ui的一半時,或控制開關K的占空比D為二分之一時,流過儲能電感L的電流上升率,在K接通期間與K關斷期間絕對值完全相等,即電感存儲能量的速度與釋放能量的速度完全相等。此時,(1-5)式中i(0)和(1-11)式中iLX均等于0。在這種情況下,流過儲能電感L的電流iL為臨界連續(xù)電流,且濾波輸出電壓Uo等于濾波輸入電壓uo的平均值Ua。參看圖1-3。 (2)當Ui > 2Uo時,即:濾波輸出電壓Uo小于電源輸入電壓Ui的一半時,或控制開關K的占空比小于二分之一時:雖然在K接通期間,流過儲能電感L的電流上升率(絕對值),大于,在K關斷期間,流過儲能電感L的電流上升率(絕對值);但由于(1-5)式中i(0)等于0,以及Ton小于Toff,此時,(1-11)式中的iLX會出現(xiàn)負值,即輸出電壓反過來要對電感充電,但由于整流二極管D的存在,這是不可能的,這表示流過儲能電感L的電流提前過0,即有斷流。在這種情況下,流過儲能電感L的電流iL不是連續(xù)電流,開關電源工作于電流不連續(xù)狀態(tài),因此,輸出電壓Uo的紋波比較大,且濾波輸出電壓Uo小于濾波輸入電壓uo的平均值Ua。參看圖1-4。 (3)當Ui < 2Uo時,即:濾波輸出電壓Uo大于電源輸入電壓Ui的一半時,或控制開關K的占空比大于二分之一時:在K接通期間,雖然流過儲能電感L的電流上升率(絕對值),小于,在K關斷期間,流過儲能電感L的電流上升率(絕對值)。但由于Ton大于Toff,(1-5)式中i(0)和(1-11)式中iLX均大于0,即:電感存儲能量每次均釋放不完。在這種情況下,流過儲能電感L的電流iL是連續(xù)電流,開關電源工作于連續(xù)電流狀態(tài),輸出電壓Uo的紋波比較小,且濾波輸出電壓Uo大于濾波輸入電壓uo的平均值Ua。參看圖1-5。 三:串聯(lián)式開關電源儲能濾波電感的計算 從前文的分析可知,串聯(lián)式開關電源輸出電壓Uo與控制開關的占空比D有關,還與儲能電感L的大小有關,因為儲能電感L決定電流的上升率(di/dt),即輸出電流的大小。因此,正確選擇儲能電感的參數(shù)相當重要。 串聯(lián)式開關電源最好工作于臨界連續(xù)電流狀態(tài),或連續(xù)電流狀態(tài)。串聯(lián)式開關電源工作于臨界連續(xù)電流狀態(tài)時,濾波輸出電壓Uo正好是濾波輸入電壓uo的平均值Ua,此時,開關電源輸出電壓的調整率為最好,且輸出電壓Uo的紋波也不大。因此,我們可以從臨界連續(xù)電流狀態(tài)著手進行分析。我們先看(1-6)式: 當串聯(lián)式開關電源工作于臨界連續(xù)電流狀態(tài)時,即D = 0.5時,i(0) = 0,iLm = 2 Io,因此,(1-6)式可以改寫為: 式中Io為流過負載的電流(平均電流),當D = 0.5時,其大小正好等于流過儲能電感L最大電流iLm的二分之一;T為開關電源的工作周期,T正好等于2倍Ton。 由此求得: 或: (1-13)和(1-14)式,就是計算串聯(lián)式開關電源儲能濾波電感L的公式(D = 0.5時)。(1-13)和(1-14)式的計算結果,只給出了計算串聯(lián)式開關電源儲能濾波電感L的中間值,或平均值,對于極端情況可以在平均值的計算結果上再乘以一個大于1的系數(shù)。 如果增大儲能濾波電感L的電感量,濾波輸出電壓Uo將小于濾波輸入電壓uo的平均值Ua,因此,在保證濾波輸出電壓Uo為一定值的情況下,勢必要增大控制開關K的占空比D,以保持輸出電壓Uo的穩(wěn)定;而控制開關K的占空比D增大,又將會使流過儲能濾波電感L的電流iL不連續(xù)的時間縮短,或由電流不連續(xù)變成電流連續(xù),從而使輸出電壓Uo的電壓紋波ΔUP-P進一步會減小,輸出電壓更穩(wěn)定。 如果儲能濾波電感L的值小于(1-13)式的值,串聯(lián)式開關電源濾波輸出的電壓Uo將大于濾波輸入電壓uo的平均值Ua,在保證濾波輸出電壓Uo為一定值的情況下,勢必要減小控制開關K的占空比D,以保持輸出電壓Uo的值不變;控制開關K的占空比D減小,將會使流過濾波電感L的電流iL出現(xiàn)不連續(xù),從而使輸出電壓Uo的電壓紋波ΔUP-P增大,造成輸出電壓不穩(wěn)定。 由此可知,調整串聯(lián)式開關電源濾波輸出電壓Uo的大小,實際上就是同時調整流過濾波電感L和控制開關K占空比D的大小。 由圖1-4可以看出:當控制開關K的占空比D小于0.5時,流過濾波電感L的電流iL出現(xiàn)不連續(xù),輸出電流Io小于流過濾波電感L最大電流iLm的二分之一,濾波輸出電壓Uo的電壓紋波ΔUP-P將顯著增大。因此,串聯(lián)式開關電源最好不要工作于圖1-4的電流不連續(xù)狀態(tài),而最好工作于圖1-3和圖1-5表示的臨界連續(xù)電流和連續(xù)電流狀態(tài)。 串聯(lián)式開關電源工作于臨界連續(xù)電流狀態(tài),輸出電壓Uo等于輸入電壓Ui的二分之一,等于濾波輸入電壓uo的平均值Ua;且輸出電流Io也等于流過濾波電感L最大電流iLm的二分之一。 串聯(lián)式開關電源工作于連續(xù)電流狀態(tài),輸出電壓Uo大于輸入電壓Ui的二分之一,大于濾波輸入電壓uo的平均值Ua;且輸出電流Io也大于流過濾波電感L最大電流iLm的二分之一。 1-2-4.串聯(lián)式開關電源儲能濾波電容的計算 我們同樣從流過儲能電感的電流為臨界連續(xù)電流狀態(tài)著手,對儲能濾波電容C的充、放電過程進行分析,然后再對儲能濾波電容C的數(shù)值進行計算。 圖1-6是串聯(lián)式開關電源工作于臨界連續(xù)電流狀態(tài)時,串聯(lián)式開關電源電路中各點電壓和電流的波形。圖1-6中,Ui為電源的輸入電壓,uo為控制開關K的輸出電壓,Uo為電源濾波輸出電壓,iL為流過儲能濾波電感電流,Io為流過負載的電流。圖1-6-a)是控制開關K輸出電壓的波形;圖1-6-b)是儲能濾波電容C的充、放電曲線圖;圖1-6-c)是流過儲能濾波電感電流iL的波形。當串聯(lián)式開關電源工作于臨界連續(xù)電流狀態(tài)時,控制開關K的占空比D等于0.5,流過負載的電流Io等于流過儲能濾波電感最大電流iLm的二分之一。 在Ton期間,控制開關K接通,輸入電壓Ui通過控制開關K輸出電壓uo ,在輸出電壓uo的作用下,流過儲能濾波電感L的電流開始增大。當作用時間t大于二分之一Ton的時候,流過儲能濾波電感L的電流iL開始大于流過負載的電流Io ,所以流過儲能濾波電感L的電流iL有一部分開始對儲能濾波電容C進行充電,儲能濾波電容C的兩端電壓開始上升。 當作用時間t等于Ton的時候,流過儲能濾波電感L的電流iL為最大,但儲能濾波電容C的兩端電壓并沒有達到最大值,此時,儲能濾波電容C的兩端電壓還在繼續(xù)上升,因為,流過儲能濾波電感L的電流iL還大于流過負載的電流Io ;當作用時間t等于二分之一Toff的時候,流過儲能濾波電感L的電流iL正好等于負載電流Io,儲能濾波電容C的兩端電壓達到最大值,電容停止充電,并開始從充電轉為放電。 可以證明,儲能濾波電容進行充電時,電容兩端的電壓是按正弦曲線的速率變化,而儲能濾波電容進行放電時,電容兩端的電壓是按指數(shù)曲線的速率變化,這一點后面還要詳細說明,請參考后面圖1-23、圖1-24、圖1-25的詳細分析。 圖1-6中,電容兩端的充放電曲線是有意把它的曲率放大了的,實際上它們的變化曲率并沒有那么大。因為儲能濾波電感L和儲能濾波電容構成的時間常數(shù)相對于控制開關的接通或關斷時間來說非常大(正弦曲線的周期:T = ),即:由儲能濾波電感L和儲能濾波電容組成諧振回路的諧振頻率,相對于開關電源的工作頻率來說,非常低,而電容兩端的充放電曲線變化范圍只相當于正弦曲線零點幾度的變化范圍,因此,電容兩端的充、放電曲線基本上可以看成是直線,這相當于用曲率的平均值取代曲線曲率。同理,圖1-3、圖1-4、圖1-5中儲能濾波電容C的兩端電壓都可以看成是按直線變化的電壓,或稱為電壓或電流鋸齒波。 實際應用中,一般都是利用平均值的概念來計算儲能濾波電容C的數(shù)值。值得注意的是:濾波電容C進行充、放電的電流ic的平均值Ia正好等于流過負載的電流Io,因為,在D等于0.5的情況下,電容充、放電的時間相等,只要電容兩端電壓的平均值不變,其充、放電的電流必然相等,并等于流過負載的電流Io。 濾波電容C的計算方法如下: 由圖1-6可以看出,在控制開關的占空比D等于0.5的情況下,電容器充、放電的電荷和充、放電的時間,以及正、負電壓紋波值均應該相等,并且電容器充電流的平均值也正好等于流過負載的電流。因此,電容器充時,電容器存儲的電荷ΔQ為: 電容器充電的電壓增量2ΔUc為: 由此求得: 或: (1-17)和(1-18)式,就是計算串聯(lián)式開關電源儲能濾波電容的公式(D = 0.5時)。式中:Io是流過負載的電流,T為控制開關K的工作周期,ΔUP-P為輸出電壓的波紋。電壓波紋ΔUP-P一般都取峰-峰值,所以電壓波紋正好等于電容器充電或放電時的電壓增量,即:ΔUP-P = 2ΔUc 。 順便說明,由于人們習慣上都是以輸出電壓的平均值為水平線,把電壓紋波分成正負兩部分,所以這里遵照習慣也把電容器充電或放電時的電壓增量分成兩部分,即:2ΔUc。 同理,(1-17)和(1-18)式的計算結果,只給出了計算串聯(lián)式開關電源儲能濾波電容C的中間值,或平均值,對于極端情況可以在平均值的計算結果上再乘以一個大于1的系數(shù)。 當儲能濾波電容的值小于(1-17)式的值時,串聯(lián)式開關電源濾波輸出電壓Uo的電壓紋波ΔUP-P會增大,并且當開關K工作的占空比D小于0.5時,由于流過儲能濾波電感L的電流iL出現(xiàn)不連續(xù),電容器放電的時間大于電容器充電的時間,因此,開關電源濾波輸出電壓Uo的電壓紋波ΔUP-P將顯著增大。因此,最好按(1-17)式計算結果的2倍以上來選取儲能濾波電容的參數(shù)。 四:反轉式串聯(lián)開關電源的工作原理 1-3-1.反轉式串聯(lián)開關電源的工作原理 圖1-7是另一種串聯(lián)式開關電源,一般稱為反轉式串聯(lián)開關電源。這種反轉式串聯(lián)開關電源與一般串聯(lián)式開關電源的區(qū)別是,這種反轉式串聯(lián)開關電源輸出的電壓是負電壓,正好與一般串聯(lián)式開關電源輸出的正電壓極性相反;并且由于儲能電感L只在開關K關斷時才向負載輸出電流,因此,在相同條件下,反轉式串聯(lián)開關電源輸出的電流比串聯(lián)式開關電源輸出的電流小一倍。 在一般電路中大部分都是使用單極性電源,但在一些特殊場合,有時需要兩組電源,其中一組為負電源。因此,選用圖1-7所示的反轉式串聯(lián)開關電源作為負電源是很方便的。 圖1-7中,Ui為輸入電源,K為控制開關,L為儲能電感,D為整流二極管,C為儲能濾波電容,R為負載電阻。當控制開關K接通的時候,輸入電源Ui開始對儲能電感L加電,流過儲能電感L的電流開始增加,同時電流在儲能電感中也要產生磁場;當控制開關K由接通轉為關斷的時候,儲能電感會產生反電動勢,使電流繼續(xù)流動,并通過整流二極管D進行整流,再經電容儲能濾波,然后向負載R提供電流輸出??刂崎_關K不斷地反復接通和關斷過程,在負載R上就可以得到一個負極性的電壓輸出。 圖1-8、圖1-9、圖1-10分別是控制開關K的占空比D等于0.5、< 0.5、> 0.5時,圖1-7電路中幾個關鍵點的電壓和電流波形。圖1-8-a)、圖1-9-a)、圖1-10-a)分別為控制開關K輸出電壓uo的波形;圖1-8-b)、圖1-9-b)、圖1-10-b)分別為儲能濾波電容兩端電壓uc的波形;圖1-8-c)、圖1-9-c)、圖1-10-c)分別為流過儲能電感L電流iL的波形。應該特別注意的是,圖1-8-c)、圖1-9-c)、圖1-10-c)中的電流波形按原理應該取負值,但取負值后與前面圖1-5與圖1-6對比反而覺得不好對比和分析,因此,當進行具體計算時,一定要注意電流和電壓的方向。 在開關接通Ton期間,控制開關K接通,電源Ui開始對儲能電感L供電,在此期間儲能電感L兩端的電壓eL為: 對(1-19)式進行積分得: 式中iL為流過儲能電感L電流的瞬時值,t為時間變量;i(0)為的初始電流,即:控制開關K接通瞬間之前,流過儲能電感L中的電流。當開關電源工作于臨界連續(xù)電流狀態(tài)時,i(0) = 0 ,由此可以求得流過儲能電感L的最大電流為: 在開關關斷Toff期間,控制開關K關斷,儲能電感L把電流iLm轉化成反電動勢,通過整流二極管D繼續(xù)向負載R提供能量,在此期間儲能電感L兩端的電壓eL為: 式中–Uo前的負號,表示K關斷期間電感產生電動勢的方向與K接通期間電感產生電動勢的方向正好相反。對(1-22)式進行積分得: 式中i(Ton+)為控制開關K從Ton轉換到Toff的瞬間之前流過電感的電流,i(Ton+)也可以寫為i(Toff-),即:控制開關K關斷或接通瞬間,之前和之后流過電感L的電流相等。實際上(1-23)式中的i(Ton+)就是(1-21)式中的iLm,即: 因此,(1-9)式可以改寫為: 當t = Toff時iL達到最小值。其最小值為: 反轉式串聯(lián)開關電源輸出電壓一般為負脈沖的幅值。當開關電源工作于臨界連續(xù)電流狀態(tài)時,流過儲能電感的初始電流i(0)等于0(參看圖1-8-a)),即:(1-26)式中流過儲能電感電流的最小值iLX等于0。因此,由(1-21)和(1-26)式,可求得反轉式串聯(lián)開關電源輸出電壓Uo為: 由(1-27)式可以看出,反轉式串聯(lián)開關電源輸出電壓與輸入電壓與開關接通的時間成正比,與開關關斷的時間成反比。 另外,從圖1-8可以看出,由于反轉式串聯(lián)開關電源,僅當控制開關K關斷期間才產生反電動勢向負載提供能量。因此,當占空比為0.5時,輸出電流的平均值Io為流過儲能電感電流最大值的四分之一;當占空比小于0.5時,輸出電流的平均值Io小于流過儲能電感電流最大值的四分之一(圖1-9);當占空比大于0.5時,輸出電流的平均值Io大于流過儲能電感電流最大值的四分之一(圖1-10)。 五:反轉式串聯(lián)開關電源儲能電感的計算 1-3-2.反轉式串聯(lián)開關電源儲能電感的計算 反轉式串聯(lián)開關電源儲能電感的計算方法與前面“串聯(lián)式開關電源儲能濾波電感的計算”方法基本相同,計算反轉式串聯(lián)開關電源中儲能電感的數(shù)值,也是從流過儲能電感的電流為臨界連續(xù)電流狀態(tài)進行分析。但須要特別注意,反轉式串聯(lián)開關電源中的儲能電感僅在控制開關K關斷期間才產生反電動勢向負載提供能量,因此,流過負載的電流比串聯(lián)式開關電源流過負載的電流小一倍,即:當占空比小于0.5時,反轉式串聯(lián)開關電源中流過負載R的電流Io只有流過儲能電感L最大電流iLm的四分之一。根據(jù)(1-21)式: (1-21)式可以改寫為: 式中Io為流過負載的電流,當D = 0.5時,其大小等于最大電流iLm的四分之一;T為開關電源的工作周期,T正好等于2倍Ton。 由此求得: 或: (1-29)和(1-30)式,就是計算反轉式串聯(lián)開關電源中儲能電感的公式。同理,(1-29)和(1-30)式的計算結果,只給出了計算反轉式串聯(lián)開關電源儲能濾波電感L的中間值,或平均值,對于極端情況可以在平均值的計算結果上再乘以一個大于1的系數(shù)。 當儲能電感L的值小于(1-29)式的值時,流過濾波電感L的電流上升率將增大,如果流過濾波電感L的電流iL為連續(xù)電流,輸出電壓Uo將會升高;如果為了維持濾波輸出電壓Uo不變,則必須要把控制開關K占空比D減小,但占空比D的減小將會使流過儲能電感的電流iL出現(xiàn)不連續(xù),從而使濾波輸出電壓Uo的電壓紋波增大。 如果流過濾波電感L的電流iL不是連續(xù)電流,儲能電感L的減小,將會使流過儲能電感的電流iL不連續(xù)的時間變長,電源濾波輸出電壓Uo不但不會升高,反而會使反轉式串聯(lián)開關電源濾波輸出電壓Uo的電壓紋波顯著增大。 當儲能濾波電感L的值大于(1-29)式的值時,流過儲能電感L的電流上升率將減小,輸出電壓Uo將降低,但濾波輸出電壓Uo的電壓紋波顯著減??;如果為了維持電源濾波輸出電壓Uo不變,控制開關K必須要把占空比D增大,而占空比D的增大又會使流過儲能電感的電流iL不連續(xù)的時間縮短,或由電流不連續(xù)變成電流連續(xù),從而使電源濾波輸出電壓Uo的電壓紋波降低。 1-3-3.反轉式串聯(lián)開關電源儲能濾波電容的計算 反轉式串聯(lián)開關電源儲能濾波電容參數(shù)的計算,與串聯(lián)式開關電源儲能濾波電容的計算方法基本相同。但要注意,即使是在占空比D等于0.5的情況下,濾波電容器充、放電的時間都不相等,濾波電容器充電的時間小于半個工作周期,而電容器放電的時間則大于半個工作周期,但電容器充、放電的電荷是相等的,即電容器充電時的電流大于放電時的電流。這是整流濾波電路的普遍規(guī)律。 從圖1-8可以看出,在占空比D等于0.5的情況下,電容器充電的時間為3/8T,電容充電電流的平均值為3/8iLm,或3/2Io;而電容器放電的時間為5/8T,電容放電電流的平均值為0.9 Io。 因此有: 式中ΔQ為電容器充電的電荷,Io流過負載的平均電流,T為工作周期。電容充電時,電容兩端的電壓由最小值充到最大值(絕對值),相應的電壓增量為2ΔUc,由此求得電容器兩端的波紋電壓ΔUP-P為: 由此求得: 或: (1-33)和(1-34)式,就是計算反轉式串聯(lián)開關電源儲能濾波電容的公式(D = 0.5時)。式中:Io是流過負載電流的平均值,T為開關工作周期,ΔUP-P為濾波輸出電壓的波紋,或電壓紋波。一般波紋電壓都是取電壓增量的峰-峰值,因此,當D = 0.5時,波紋電壓等于電容器充電的電壓增量,即:ΔUP-P = 2ΔUc 。 同理,(1-33)和(1-34)式的計算結果,只給出了計算反轉式串聯(lián)開關電源儲能濾波電容C的中間值,或平均值,對于極端情況可以在平均值的計算結果上再乘以一個大于1的系數(shù)。 當開關K的占空比D小于0.5時,由于流過儲能濾波電感L的電流會不連續(xù),電容器放電的時間將遠遠大于電容器充電的時間,因此,開關電源濾波輸出電壓的紋波將顯著增大。另外,開關電源的負載一般也不是固定的,當負載電流增大的時候,開關電源濾波輸出電壓的紋波也將會增大。因此,設計開關電源的時候要留有充分的余量,實際應用中最好按(1-33)式計算結果的2倍以上來計算儲能濾波電容的參數(shù)。 六:并聯(lián)式開關電源 1-4.并聯(lián)式開關電源 并聯(lián)式開關電源的工作原理比較簡單,工作效率很高,因此應用很廣泛,特別是在一些小電子產品中,并聯(lián)式開關電源作為DC/DC升壓電源應用最廣。例如,很多使用干電池的手提式電器,由于干電池的電壓一般只有1.5V或3V,為了提高工作電壓,都是使用并聯(lián)式開關電源把工作電壓提高一倍。并聯(lián)式開關電源的缺點是輸入與輸出共用一個地,因此,容易產生EMI干擾。 1-4-1.并聯(lián)式開關電源的工作原理 eL = Ldi/dt = Ui —— K接通期間 圖1-11-a是并聯(lián)式開關電源的最簡單工作原理圖,圖1-11-b是并聯(lián)式開關電源輸出電壓的波形。圖1-11-a中Ui是開關電源的工作電壓,L是儲能電感,K是控制開關,R是負載。圖1-11-b中Ui是開關電源的輸入電壓,Uo是開關電源輸出的電壓,Up是開關電源輸出的峰值電壓,Ua是開關電源輸出的平均電壓。 當控制開關K接通時,輸入電源Ui開始對儲能電感L加電,流過儲能電感L的電流開始增加,同時電流在儲能電感中也要產生磁場;當控制開關K由接通轉為關斷的時候,儲能電感會產生反電動勢,反電動勢產生電流的方向與原來電流的方向相同,因此,在負載上會產生很高的電壓。 在Ton期間,控制開關K接通,儲能濾波電感L兩端的電壓eL正好與輸入電壓Ui相等,即: 對上式進行積分,可求得流過儲能電感L的電流為: 式中iL為流過儲能電感L電流的瞬時值,t為時間變量,i(0)為流過儲能電感的初始電流,即:開關K接通前瞬間流過儲能電感的電流。一般當占空比D小于或等于0.5時,i(0)= 0,由此可以求得流過儲能電感L的最大電流ILm為: 式中Ton為控制開關K接通的時間。當圖1-11-a中的控制開關K由接通狀態(tài)突然轉為關斷時,儲能電感L會把其存儲的能量(磁能)通過反電動勢進行釋放,儲能電感L產生的反電動勢為: 式中負號表示反電動勢eL的極性與(1-35)式中的符號相反,即:K接通與關斷時電感的反電動勢的極性正好相反。對(1-38)式階微分方程求解得: 式中C為常數(shù),把初始條件代入上式,就很容易求出C,由于控制開關K由接通狀態(tài)突然轉為關斷時,流過儲能電感L中的電流iL不能突變,因此,i(Ton+)正好等于流過儲能電感L的最大電流ILm ,所以(1-39)式可以寫為: 圖1-11-a并聯(lián)式開關電源輸出電壓uo等于: 由(1-41)式可以看出,當t = 0時,即:K關斷瞬間,輸出電壓有最大值: 當t等于很大時,并聯(lián)式開關電源輸出電壓的值將接近輸入電壓Ui,但這種情況一般不會發(fā)生,因為控制開關K的關斷時間等不了那么長。 從(1-42)式可以看出,當并聯(lián)式開關電源的負載R很大或開路時,輸出脈沖電壓的幅度將非常高。因此,并聯(lián)式開關電源經常用于高壓脈沖發(fā)生電路。 七:并聯(lián)開關電源儲能電感的計算 1-4-3.并聯(lián)開關電源儲能電感的計算 與前面計算反轉式串聯(lián)開關電源中儲能電感的數(shù)值方法基本相同,計算并聯(lián)式開關電源儲能電感也是從流過儲能電感的電流為臨界連續(xù)電流狀態(tài)著手進行分析。并聯(lián)式開關電源中的儲能電感與反轉式串聯(lián)開關電源中的儲能電感工作原理基本一樣,都是在控制開關K關斷期間才產生反電動勢向負載提供能量,因此,流過負載的電流只有流過儲能電感電流的四分之一。 (1-45)式可以改寫為: 式中Io為流過負載的電流,當D = 0.5時,其大小等于最大電流iLm的四分之一;T為開關電源的工作周期,T正好等于2倍Ton。 由此求得: (1-54)和(1-55)式,就是計算并聯(lián)式開關電源儲能電感的公式。同理,(1-54)和(1-55)式的計算結果,只給出了計算并聯(lián)開關電源儲能濾波電感L的中間值,或平均值,對于極端情況可以在平均值的計算結果上再乘以一個大于1的系數(shù)。 對于電感取不同數(shù)值和在不同的占空比狀態(tài)下工作的情況分析,請參考前面關于“反轉式串聯(lián)開關電源儲能電感的計算”內容的論述。 1-4-4.并聯(lián)式開關電源儲能濾波電容的計算 并聯(lián)式開關電源儲能濾波電容的計算,可以參考前面串聯(lián)式開關電源或反轉式串聯(lián)開關電源中儲能濾波電容的計算方法,同時還可以參考圖1-6中儲能濾波電容C的充、放電過程。 這里要特別注意的是,并聯(lián)式開關電源與反轉式串聯(lián)開關電源中的儲能電感一樣,僅在控制開關K關斷期間才產生反電動勢向負載提供能量,因此,即使是在占空比D等于0.5的情況下,儲能濾波電容器充電的時間與放電的時間也不相等,電容器充電的時間小于半個工作周期,而電容器放電的時間則大于半個工作周期,但電容器充、放電的電荷是相等的,即電容器充電時的電流大于放電時的電流。 從圖1-13可以看出,并聯(lián)式開關電源,流過負載的電流比串聯(lián)式開關電源流過負載的電流小一倍,流過負載的電流Io只有流過儲能電感最大電流iLm的四分之一。在占空比D等于0.5的情況下,電容器充電的時間為3/8T,電容充電電流的平均值為3/8iLm,或3/2 I;而電容器放電的時間為5/8T,電容放電電流的平均值為0.9 Io。因此有: 式中ΔQ為電容器充電的電荷,Io流過負載的平均電流,T為工作周期。電容充電時,電容兩端的電壓由最小值充到最大值(絕對值),相應的電壓增量為2ΔUc,由此求得電容器兩端的波紋電壓ΔUP-P為: 由此求得: 或: (1-58)和(1-59)式,就是計算并聯(lián)開關電源儲能濾波電容的公式(D = 0.5時)。式中:Io是流過負載電流的平均值,T為開關工作周期,ΔUP-P為濾波輸出電壓的波紋,或電壓紋波。一般波紋電壓都是取電壓增量的峰-峰值,因此,當D = 0.5時,波紋電壓等于電容器充電的電壓增量,即:ΔUP-P = 2ΔUc 。 同理,(1-58)和(1-59)式的計算結果,只給出了計算并聯(lián)式開關電源儲能濾波電容C的中間值,或平均值,對于極端情況可以在平均值的計算結果上再乘以一個大于1的系數(shù)。 當開關K工作占空比D小于0.5時,由于流過儲能濾波電感L的電流會不連續(xù),電容器放電的時間將遠遠大于電容器充電的時間,因此,開關電源濾波輸出電壓的紋波將顯著增大。另外,開關電源的負載一般也不是固定的,當負載電流增大的時候,開關電源濾波輸出電壓的紋波也將會增大。因此,設計開關電源的時候要留有充分的余量,實際應用中最好按(1-58)式計算結果的2倍以上來計算儲能濾波電容的參數(shù)。 八:單激式變壓器開關電源 1-5.單激式變壓器開關電源 變壓器開關電源的最大優(yōu)點是,變壓器可以同時輸出多組不同數(shù)值的電壓,改變輸出電壓和輸出電流很容易,只需改變變壓器的匝數(shù)比和漆包線截面積的大小即可;另外,變壓器初、次級互相隔離,不需共用同一個地。因此,變壓器開關電源也有人把它稱為離線式開關電源。這里的離線并不是不需要輸入電源,而是輸入電源與輸出電源之間沒有導線連接,完全是通過磁場偶合傳輸能量。 變壓器開關電源采用變壓器把輸入輸出進行電器隔離的最大好處是,提高設備的絕緣強度,降低安全風險,同時還可以減輕EMI干擾,并且還容易進行功率匹配。 變壓器開關電源有單激式變壓器開關電源和雙激式變壓器開關電源之分,單激式變壓器開關電源普遍應用于小功率電子設備之中,因此,單激式變壓器開關電源應用非常廣泛。而雙激式變壓器開關電源一般用于功率較大的電子設備之中,并且電路一般也要復雜一些。 單激式變壓器開關電源的缺點是變壓器的體積比雙激式變壓器開關電源的激式變壓器的體積大,因為單激式開關電源的變壓器的磁芯只工作在磁回路曲線的單端,磁回路曲線變化的面積很小。 1-5-1.單激式變壓器開關電源的工作原理 圖1-16-a是單激式變壓器開關電源的最簡單工作原理圖。圖1-16-a中,Ui是開關電源的輸入電壓,T是開關變壓器,K是控制開關,R是負載電阻。 當控制開關K接通的時候,直流輸入電壓Ui首先對變壓器T的初級線圈N1繞組供電,電流在變壓器初級線圈N1繞組的兩端會產生自感電動勢e1;同時,通過互感M的作用,在變壓器次級線圈N2繞組的兩端也會產生感應電動勢e2;當控制開關K由接通狀態(tài)突然轉為關斷狀態(tài)的時候,電流在變壓器初級線圈N1繞組中存儲的能量(磁能)也會產生反電動勢e1;同時,通過互感M的作用,在變壓器次級線圈N2繞組中也會產生感應電動勢e2。 因此,在控制開關K接通之前和接通之后,在變壓器初、次級線圈中感應產生的電動勢方向是不一樣的。 所謂單激式變壓器開關電源,是指開關電源在一個工作周期之內,變壓器的初級線圈只被直流電壓激勵一次。一般單激式變壓器開關電源在一個工作周期之內,只有半個周期向負載提供功率(或電壓)輸出。當變壓器的初級線圈正好被直流電壓激勵時,變壓器的次級線圈也正好向負載提供功率輸出,這種變壓器開關電源稱為正激式開關電源;當變壓器的初級線圈正好被直流電壓激勵時,變壓器的次級線圈沒有向負載提供功率輸出,而僅在變壓器初級線圈的激勵電壓被關斷后才向負載提供功率輸出,這種變壓器開關電源稱為反激式開關電源。 圖1-16-b是單激式變壓器開關電源輸出電壓的波形,由于輸出電壓是由變壓器的次級輸出,因此,在輸出電壓uo中完全沒有直流成份。輸出電壓正半波的面積與負半波的面積完全相等,這是單激式變壓器開關電源輸出電壓波形的特點。圖1-16-b中,當只輸出正半波電壓時,為正激式開關電源;反之,當只輸出負半波電壓時,為反激式開關電源。 順便指出,圖1-16-b中變壓器輸出電壓波形極性的正負,是可以通過調整變壓器線圈的饒線方向(相位)來改變的。嚴格地說,只有當控制開關的占空比等于0.5時,開關電源的輸出電壓才能稱為正、負半周電壓,但由于人們已習慣了正、負半周的叫法,所以,只要是有正、負電壓輸出的電源,我們還是習慣地把它們稱為正、負半周。但為了與占空比不等于0.5時的電壓波形相區(qū)別,我們有時特別把占空比不等于0.5時的電壓波形稱為正、負半波。因此,有些場合在不影響對正、負半波電壓的理解時,或占空比不確定時,我們也習慣地把正、負半波稱為正、負半周。 圖1-16-a中,在Ton期間,控制開關K接通,輸入電源Ui開始對變壓器初級線圈N1繞組加電,電流從變壓器初級線圈N1繞組的兩端經過,通過電磁感應會在變壓器的鐵心中產生磁場,并產生磁力線;同時,在初級線圈N1繞組的兩端要產生自感電動勢E1,在次級線圈N2繞組的兩端也會產生感應電動勢e2;感應電動勢e2作用于負載R的兩端,從而產生負載電流。因此,在初、次級電流的共同作用下,在變壓器的鐵心中會產生一個由流過變壓器初、次級線圈電流產生的合成磁場,這個磁場的大小可用磁力線通量(簡稱磁通量),即磁力線的數(shù)目 來表示。 如果用 1來表示變壓器初級線圈電流產生的磁通量,用 2來表示變壓器次級線圈電流產生的磁通量,由于變壓器初、次級線圈電流產生的磁場方向總是相反,則在控制開關K接通期間,由流過變壓器初、次級線圈電流在變壓器鐵心中產生的合成磁場的總磁通量 為: 其中變壓器初級線圈電流產生的磁通 1還可以分成兩個部分,一部分用來抵消變壓器次級線圈電流產生的磁通 2,記為 10,另一部分是由勵磁電流產生的磁通,記為Δ 1。顯然 10 =- 2,Δ 1 = 。即:變壓器鐵心中產生的磁通量 ,只與流過變壓器初級線圈中的勵磁電流有關,與流過變壓器次級線圈中的電流無關;流過變壓器次級線圈中的電流產生的磁通,完全被流過變壓器初級線圈中的另一部分電流產生的磁通抵消。 根據(jù)電磁感應定律可以對變壓器初級線圈N1繞組回路列出方程: 同樣,可以對變壓器次級線圈N2繞組回路列出方程: 根據(jù)(1-61)和(1-62)可以求得: 圈N1繞組的輸入電壓;n為變壓比,即:開關變壓器次級線圈輸出電壓與初級線圈輸入電壓之比,n也可以看成是開關變壓器次級線圈N2繞組與初級線圈N1繞組的匝數(shù)比,即:n = N2/N1。 由此可知,在控制開關K接通期間,正激式開關變壓器次級輸出電壓的幅值只與輸入電壓和變壓器的次/初級變壓比有關。 我們再來分析控制開關K關斷期間的情況。 在Toff期間,控制開關K關斷,流過變壓器初級線圈的電流突然為0。由于變壓器初級線圈回路中的電流產生突變,而變壓器鐵心中的磁通量 不能突變,因此,必須要求流過變壓器次級線圈回路的電流也跟著突變,以抵消變壓器初級線圈電流突變的影響,要么,在變壓器初級線圈回路中將出現(xiàn)非常高的反電動勢電壓,把控制開關或變壓器擊穿。 如果變壓器鐵心中的磁通 產生突變,變壓器的初、次級線圈就會產生無限高的反電動勢,反電動勢又會產生無限大的電流,而電流在線圈中產生的磁力線又會抵制磁通的變化,因此,變壓器鐵心中的磁通變化,最終還是要受到變壓器初、次級線圈中的電流來約束的。 因此,在控制開關K關斷的Toff期間,變壓器鐵心中的磁通 主要由變壓器次級線圈回路中的電流來決定,即: 式中負號表示反電動勢e2的極性與(1-62)式中的符號相反,即:K接通與關斷時變壓器次級線圈產生的感應電動勢的極性正好相反。對(1-64)式階微分方程求解得: 式中C為常數(shù),把初始條件代入上式,就很容易求出C,由于控制開關K由接通狀態(tài)突然轉為關斷時,變壓器初級線圈回路中的電流突然為0,而變壓器鐵心中的磁通量 不能突變,因此,變壓器次級線圈回路中的電流i2一定正好等于控制開關K接通期間的電流i2(Ton+),與變壓器初級線圈回路中勵磁電流被折算到變壓器次級線圈回路電流之和。所以(1-65)式可以寫為: (1-66)式中,括弧中的第一項表示變壓器次級線圈回路中的電流,第二項表示變壓器初級線圈回路中勵磁電流被折算到變壓器次級線圈回路的電流。 圖1-16-a單激式變壓器開關電源輸出電壓uo等于: 由(1-67)式可以看出,當t = 0時,即:K關斷瞬間,輸出電壓有最大值: (1-68)式中的Up-就是反擊式輸出電壓的峰值,或輸出電壓最大值。由此可知,在控制開關K關斷瞬間,當變壓器次級線圈回路負載開路時,變壓器次級線圈回路會產生非常高的反電動勢。理論上需要時間t等于無限大時,變壓器次級線圈回路輸出電壓才為0,但這種情況一般不會發(fā)生,因為控制開關K的關斷時間等不了那么長。 從(1-63)和(1-67)式可以看出,開關變壓器的工作原理與普通變壓器的工作原理是不一樣的。當開關電源工作于正激時,開關變壓器的工作原理與普通變壓器的工作原理基本相同;當開關電源工作于反激時,開關變壓器的工作原理相當于一個儲能電感。 如果我們把輸出電壓uo的正、負半波分別用平均值Upa、Upa-來表示,則有: 根據(jù)電磁感應定律可以對變壓器次級線圈N2繞組回路列出方程: 分別對(1-71)和(1-72)兩式進行積分得: 由此我們可以求得,單激式變壓器開關電源輸出電壓正半波的面積與負半波的面積完全相等,即: (1-75)式就是用來計算單激式變壓器開關電源輸出電壓半波平均值Upa和Upa-的表達式。上面(1-73)、(1-74)、(1-75)式中,我們分別把Upa和Upa-定義為正半波平均值和負半波平均值,簡稱半波平均值,而把Ua 和Ua- 稱為一周平均值。從圖1-16-b可以看出,Upa正好等于Up,但Upa-并不等于Up- ,Upa- 小于Up- 。 半波平均值Upa和Upa-,以及一周平均值Ua 和Ua- ,對于分析開關電源的工作原理是一個非常重要的概念,下面經常用到,在這里務必記清楚。 在開關電源中,正激電壓和反激電壓是同時存在的,但在單激式開關電源中一般只能有一種電壓用于功率輸出。這是因為單激式開關電源一般都要求輸出電壓可調,即:通過改變控制開關的占空比來調整開關電源輸出電壓的大小。如:在正激式開關電源中,只有(1-75)式等號左邊Upa電壓向負載提供功率輸出,通過改變控制開關的占空比,可以改變其輸出電壓的平均值;在反激式開關電源中,只有(1-75)式等號右邊Upa-電壓向負載提供功率輸出,通過改變控制開關的占空比,可以改變其輸出電壓的半波平均值。 在(1-75)式中,如果把等號左邊的Upa看成是正激電壓,則等號右邊的Upa-就可以看成是反激電壓,反之則反。在正激式開關電源中,由于只有正激電壓Upa向負載提供功率輸出,所以反激電壓Upa-就相當于一個附屬產品需要另外回收;在反激式開關電源中,由于只有反激電壓Upa-向負載提供功率輸出,所以正激電壓Upa就相當于用來對能量進行存儲,以便于給反激電壓Upa-提供能量輸出。 如果(1-75)式中正激電壓沒有電流輸出,就不能把正激電壓看成是正激式輸出電壓,我們應該把它看成是反激式輸出電壓的一個過程,就是為反激式輸出電壓存儲能量。這樣定義雖然有點勉強,但主要目的還是為了讓我們增強對開關電源工作原理的理解。 這是因為,(1-75)式中無論是正激電壓Upa或是反激電壓Upa-,都是由流過變壓器初級線圈的勵磁電流產生的磁通,通過互感的作用所產生的。但勵磁電流產生的磁通并不直接向正激電壓Upa提供能量輸出,因為(1-71)、(1-72)、(1-73)、(1-74)等式中的磁通 并不是由正激電壓產生的,而是由勵磁電流自己產生的。勵磁電流產生的磁通 雖然通過電磁感應會產生正激電壓,但不產生正激電流輸出,即:勵磁電流對正激式輸出電壓不提供功率輸出。不管正激式輸出功率或電流多大,變壓器初級線圈中的勵磁電流或磁通的變化只與輸入電壓和變壓器的初級電感量有關,而與正激式輸出功率或電流大小無關。 這是因為我們把變壓器鐵心中的磁通 分成了兩個部分,即:勵磁電流產生的磁通和正激電流產生的磁通,來進行分析的緣故。正激輸出電流產生的磁通與流過變壓器初級線圈電流產生的磁通,方向相反,互相可以抵消,而剩下來的磁通正好就是勵磁電流產生的;因此,只有勵磁電流產生的磁通才會產生反激式輸出電壓和電流。正激式輸出電壓只與變壓器的輸入電壓和變壓器的初、次級線圈的匝數(shù)比有關,兩種電壓輸出機理是不完全一樣的。 在變壓器開關電源中,正激式輸出電壓的計算比較簡單,而反激式輸出電壓的計算相對來說很復雜,因此,如果沒有十分必要,最好采用半波平均值的概念和(1-75)式,通過計算正激電壓的半波平均值,來推算反激式輸出電壓的半波平均值。因此,(1-75)式主要還是用來計算反激式輸出電壓的半波平均值的。 另外,還需特別注意:(1-75)式中,正激電壓的幅值或半波平均值是不會跟隨控制開關的接通時間Ton或占空比D的改變而改變的;而反激電壓的幅值或半波平均值則要跟隨控制開關的接通時間Ton或占空比D的改變而改變,占空比D越大,反激電壓的幅值或半波平均值就越高。正激式開關電源與反激式開關電源的區(qū)別不只是輸出電壓極性的不同,更重要的是變壓器的參數(shù)要求不一樣;在正激式開關電源中,反激式輸出電壓的能量與正激式輸出電壓的能量相比,一般都比較小,有時甚至可以忽略。 根據(jù)(1-63)式與半波平均值的定義,可以求得正激式開關電源輸出電壓為: 根據(jù)(1-70)式和(1-75)式,可以求得反激式開關電源輸出電壓為: 由(1-76)、(1-77)和(1-78)、(1-79)式看出: 當開關電源工作于正激式輸出狀態(tài)的時候,改變控制開關K的占空比D,只能改變輸出電壓(圖1-16-b中正半周)的平均值Ua ,而輸出電壓的幅值Up不變;當開關電源工作于反激式輸出狀態(tài)的時候,改變控制開關K的占空比D,不但可以改變輸出電壓uo(圖1-16-b中負半周)的幅值Up- ,而且也可以改變輸出電壓的平均值Ua- 。 這里還需提請注意,在決定反激式開關電源輸出電壓的(1-78)式中,并沒有使用反激輸出電壓最大值或峰值Up-的概念,而式使用的Up正好是正擊式輸出電壓的峰值,這是因為反激輸出電壓的最大值或峰值Up-計算比較復雜((1-68)式),并且峰值Up-的幅度不穩(wěn)定,它會隨著輸出負載大小的變化而變化;而正擊式輸出電壓的峰值Up則不會隨著輸出負載大小的變化而變化。 九:正激式變壓器開關電源 正激式變壓器開關電源輸出電壓的瞬態(tài)控制特性和輸出電壓負載特性,相對來說比較好,因此,工作比較穩(wěn)定,輸出電壓不容易產生抖動,在一些對輸出電壓參數(shù)要求比較高的場合,經常使用。 1-6-1.正激式變壓器開關電源工作原理 所謂正激式變壓器開關電源,是指當變壓器的初級線圈正在被直流脈沖電壓激勵時,變壓器的次級線圈正好有功率輸出。 圖1-17是正激式變壓器開關電源的簡單工作原理圖,圖1-17中Ui是開關電源的輸入電壓,T是開關變壓器,K是控制開關,L是儲能濾波電感,C是儲能濾波電容,D2是續(xù)流二極管,D3是削反峰二極管,R是負載電阻。 在圖1-17中,需要特別注意的是開關變壓器初、次級線圈的同名端。如果把開關變壓器初線圈或次級線圈的同名端弄反,圖1-17就不再是正激式變壓器開關電源了。 我們從(1-76)和(1-77)兩式可知,改變控制開關K的占空比D,只能改變輸出電壓(圖1-16-b中正半周)的平均值Ua ,而輸出電壓的幅值Up不變。因此,正激式變壓器開關電源用于穩(wěn)壓電源,只能采用電壓平均值輸出方式。 圖1-17中,儲能濾波電感L和儲能濾波電容C,還有續(xù)流二極管D2,就是電壓平均值輸出濾波電路。其工作原理與圖1-2的串聯(lián)式開關電源電壓濾波輸出電路完全相同,這里不再贅述。關于電壓平均值輸出濾波電路的詳細工作原理,請參看“1-2.串聯(lián)式開關電源”部分中的“串聯(lián)式開關電源電壓濾波輸出電路”內容。 正激式變壓器開關電源有一個最大的缺點,就是在控制開關K關斷的瞬間開關變壓器的初、次線圈繞組都會產生很高的反電動勢,這個反電動勢是由流過變壓器初線圈繞組的勵磁電流存儲的磁能量產生的。因此,在圖1-17中,為了防止在控制開關K關斷瞬間產生反電動勢擊穿開關器件,在開關變壓器中增加一個反電動勢能量吸收反饋線圈N3繞組,以及增加了一個削反峰- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 開關電源設計 開關電源 設計 word
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://weibangfood.com.cn/p-8825825.html